Refinar búsqueda
Resultados 1-10 de 68
Disturbance of glutamate metabolism and inhibition of CaM-CaMKII-CREB signaling pathway in the hippocampus of mice induced by 1,2-dichloroethane exposure
2022
Huang, Weiyu | Wang, Zijiang | Wang, Gaoyang | Li, Kunyang | Jin, Yaping | Zhao, Fenghong
1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca²⁺. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.
Mostrar más [+] Menos [-]Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways
2021
Li, Dong | Zhou, Chunran | Zou, Nan | Wu, Yangliu | Zhang, Jingbang | An, Quanshun | Li, Jia-Qi | Pan, Canping
An emerging stress of pesticides in plant and soil is closely watched as it affects crop antioxidant systems, nutritional quality, and flavor. Although selenium (Se) can enhance the resistance of plants, the protective mechanism of nanoselenium is still not known under the long-term pesticide stress in tea trees. In this study, we investigated the potential effects of foliar application of nanoselenium for a two-year field experiment on tea plants under pesticide-induced oxidative stress. Compared to control, nano-Se (10 mg/L) markedly enhanced the protein, soluble sugar, carotenoid, tea polyphenols, and catechins contents. High levels of theanine, glutamic acid, proline, and arginine were found to be induced most likely by adjusting the GS-GOGAT cycle. Se-supplementation may promote tea leaves’ secondary metabolism, thus increasing the accumulation of total phenols and flavonoids (apigenin, kaempferol, quercetin, myricetin, and rutin). It also minimized the accumulation of malondialdehyde, hydrogen peroxide, and superoxide anion by activating the antioxidants enzymes including in the AsA-GSH cycle. Selenium-rich tea also showed better fragrance and flavor. In summary, nano-Se can ameliorate the nutrients quality and abiotic stresses resistance of crops.
Mostrar más [+] Menos [-]Physiological stress response of the scleractinian coral Stylophora pistillata exposed to polyethylene microplastics
2020
Lanctôt, Chantal M. | Bednarz, Vanessa N. | Melvin, Steven | Jacob, Hugo | Oberhaensli, François | Swarzenski, Peter W. | Ferrier-Pagès, Christine | Carroll, Anthony R. | Metian, Marc
We investigated physiological responses including calcification, photosynthesis and alterations to polar metabolites, in the scleractinian coral Stylophora pistillata exposed to different concentrations of polyethylene microplastics. Results showed that at high plastic concentrations (50 particles/mL nominal concentration) the photosynthetic efficiency of photosystem II in the coral symbiont was affected after 4 weeks of exposure. Both moderate and high (5 and 50 particles/mL nominal) concentrations of microplastics caused subtle but significant alterations to metabolite profiles of coral, as determined by Nuclear Magnetic Resonance (NMR) spectroscopy. Specifically, exposed corals were found to have increased levels of phosphorylated sugars and pyrimidine nucleobases that make up nucleotides, scyllo-inositol and a region containing overlapping proline and glutamate signals, compared to control animals. Together with the photo-physiological stress response observed and previously published literature, these findings support the hypothesis that microplastics disrupt host-symbiont signaling and that corals respond to this interference by increasing signaling and chemical support to the symbiotic zooxanthellae algae. These findings are also consistent with increased mucus production in corals exposed to microplastics described in previous studies. Considering the importance of coral reefs to marine ecosystems and their sensitivity to anthropogenic stressors, more research is needed to elucidate coral response mechanisms to microplastics under realistic exposure conditions.
Mostrar más [+] Menos [-]Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture
2017
Shen, Yu | Li, Jinfeng | Gu, Ruochen | Yue, Le | Zhan, Xinhua | Xing, Baoshan
Leaf is an important organ in responding to environmental stresses. To date, chlorophyll metabolism under polycyclic aromatic hydrocarbon (PAH) stress is still unclear. Here we reveal, for the first time, the chlorophyll metabolism of wheat seedling leaves in response to phenanthrene (a model PAH) exposure. In this study, the hydroponic experiment was employed, and the wheat seedlings were exposed to phenanthrene to observe the response at day 1, 3, 5, 7 and 9. Over the exposure time, wheat leaf color turns light. With the accumulation of phenanthrene, the concentrations of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide increase while the concentrations of porphobilinogen and Chlorophyll b decrease. Also chlorophyll a content rises initially and then declines. Uroporphyrinogen III synthase and chlorophyllase are activated and porphobilinogen deaminase activity declines in the treatments. Both chlorophyll synthesis and degradation are enhanced, but the degradation rate is faster. Phenanthrene accumulation has significant and positive effects on increase of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide concentrations. There is a negative correlation between phenanthrene accumulation and total chlorophyll. Additionally, the leaf moisture increases. Therefore, it is concluded that wheat leaf chlorosis results from a combination of accelerated chlorophyll degradation and elevated leaf moisture under phenanthrene exposure. Our results are helpful not only for better understanding the toxicity of PAHs to plants and crop PAH-adaptive mechanism in the environment, but also for potentially employing the changes of the chlorophyll-synthesizing precursors and enzyme activities in plant leaves as indicators of plant response to PAH pollution.
Mostrar más [+] Menos [-]Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning 1H NMR spectroscopy
2016
1H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 μM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 μM CLD and 25 μM γHCH for 7 days (mimicking hot spot contaminations). The 1H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, 1H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity.
Mostrar más [+] Menos [-]Salinity mediated cross-tolerance of arsenic toxicity in the halophyte Salvadora persica L. through metabolomic dynamics and regulation of stomatal movement and photosynthesis
2022
Patel, Monika | Parida, Asish Kumar
Arsenic (As) is a highly toxic metalloid adversely affecting the environment, human health, and crop productivity. The present study assessed the synergistic effects of salinity and As on photosynthetic attributes, stomatal regulations, and metabolomics responses of the xero-halophyte Salvadora persica to decipher the As-salinity cross-tolerance mechanisms and to identify the potential metabolites/metabolic pathways involved in cross-tolerance of As with salinity. Salinity and As stress-induced significant stomatal closure in S. persica suggests an adaptive response to decrease water loss through transpiration. NaCl supplementation improved the net photosynthetic rate (by +39%), stomatal conductance (by +190%), water use efficiency (by +55%), photochemical quenching (by +37%), and electron transfer rate (54%) under As stress as compared to solitary As treatment. Our results imply that both stomatal and non-stomatal factors account for a reduction in photosynthesis under high salinity and As stress conditions. A total of 64 metabolites were identified in S. persica under salinity and/or As stress, and up-regulation of various metabolites support early As-salinity stress tolerance in S. persica by improving antioxidative defense and ROS detoxification. The primary metabolites such as polyphenols (caffeic acid, catechin, gallic acid, coumaric acid, rosmarinic acid, and cinnamic acid), amino acids (glutamic acid, cysteine, glycine, lysine, phenylalanine, and tyrosine), citrate cycle intermediates (malic acid, oxalic acid, and α-ketoglutaric acid), and most of the phytohormones accumulated at higher levels under combined treatment of As + NaCl compared to solitary treatment of As. Moreover, exogenous salinity increased glutamate, glycine, and cysteine, which may induce higher synthesis of GSH-PCs in S. persica. The metabolic pathways that were significantly affected in response to salinity and/or As include inositol phosphate metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, amino acid metabolism, and glutathione metabolism. Our findings indicate that inflections of various metabolites and metabolic pathways facilitate S. persica to withstand and grow optimally even under high salinity and As conditions. Moreover, the addition of salt enhanced the arsenic tolerance proficiency of this halophyte.
Mostrar más [+] Menos [-]The adaptive mechanism of halophilic Brachybacterium muris in response to salt stress and its mitigation of copper toxicity in hydroponic plants
2022
Liu, Siyu | Liu, Xiayu | Shi, Ying | Zhuang, Shulin | Chen, Qihe
Serious environmental pollution of heavy metals has attracted people's attention in recent years and halophiles seem to be potential bioremediation in the controlling of heavy metals contamination. In this study, the adaptive mechanism of halophilic Brachybacterium muris (B. muris) in response to salt stress and its mitigation of copper (Cu) toxicity in hydroponic plants were investigated. The cell morphology was observed using transmission electron microscopy. The cell membrane composition and fluidity were examined by the combination of gas chromatography, gas chromatography-mass spectrometry, ultra-high performance liquid chromatography-mass spectrometry, and fluorescence spectrophotometry. Moreover, the metabolic pathways of B. muris in response to salt stress were analyzed using the prokaryotic transcriptomics approach. A hydroponic co-culture model was further conducted to explore the effects of B. muris on wheat seedlings subjected to Cu toxicity. It was found that B. muris can respond to high osmotic pressure by improving the cell membrane fluidity, altering the cell morphology and cell membrane compositions. The proportion of unsaturated fatty acids, phosphatidylethanolamine, and phosphatidylinositol in B. muris cell membranes increased significantly, while zymosterol, fecosterol, and ergosterol contents decreased under a high salinity situation. Further transcriptomic analysis showed that genes encoding L-glutamate synthase, glutamate ABC transporter ATP-binding protein, and sodium cotransporter were up-regulated, indicating that both the synthesis and transport of glutamate were significantly enhanced under high osmotic pressure. Additionally, B. muris alleviated the inhibitory effect of Cu²⁺ on wheat seedlings' growth, causing a 30.14% decrease in H₂O₂ content and a significant increase of 83.86% and 45.96% in POD activity and GSH content in wheat roots, respectively. The findings of this study suggested that the salt-tolerant B. muris may serve as a promising strategy for improving the bioremediation of metal-contaminated saline water and soils.
Mostrar más [+] Menos [-]Polystyrene microplastics up-regulates liver glutamine and glutamate synthesis and promotes autophagy-dependent ferroptosis and apoptosis in the cerebellum through the liver-brain axis
2022
Yin, Kai | Wang, Dongxu | Zhao, Hongjing | Wang, Yu | Zhang, Yue | Liu, Yachen | Li, Baoying | Xing, Mingwei
Microplastics (MPs), which are emerging environmental pollutants, remain uncertainties in their toxic mechanism. MPs have been linked to severe liver metabolic disorders and neurotoxicity, but it is still unknown whether the abnormal metabolites induced by MPs can affect brain tissue through the liver-brain axis. Exposed to MPs of chickens results in liver metabolic disorders and increased glutamine and glutamate synthesis. The relative expression of glutamine in the C group was −0.862, the L-PS group was 0.271, and the H-PS group was 0.592. The expression of tight junction proteins in the blood-brain barrier (BBB) was reduced by PS-MPs. Occludin protein expression decreased by 35.8%–41.2%. Claudin 3 decreased by 19.6%–42.3%, and ZO-1 decreased by 28.3%–44.6%. Excessive glutamine and glutamate cooperated with PS-MPs to inhibit the Nrf2-Keap1-HO-1/NQO1 signaling pathway and triggered autophagy-dependent ferroptosis and apoptosis. GPX protein expression decreased by 30.9%–38%. LC3II/LC3I increased by 54%, and Caspase 3 increased by 45%. Eventually, the number of Purkinje cells was reduced, causing neurological dysfunction. In conclusion, this study provides new insights for revealing the mechanism of nervous system damaged caused by PS-MPs exposed in chickens.
Mostrar más [+] Menos [-]Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster
2021
Wang, Yahong | Zhang, Hongying | Zhang, Ziyan | Sun, Boqun | Tang, Chao | Zhang, Lu | Jiang, Zhihao | Ding, Bo | Liao, Yanyan | Cai, Peng
With the rapid development of science and technology, 5G technology will be widely used, and biosafety concerns about the effects of 5G radiofrequency radiation on health have been raised. Drosophila melanogaster was selected as the model organism for our study, in which a 3.5 GHz radiofrequency radiation (RF-EMR) environment was simulated at intensities of 0.1 W/m², 1 W/m², and 10 W/m². The activity of parent male and offspring (F1) male flies was measured using a Drosophila activity monitoring system under short-term and long-term 3.5 GHz RF-EMR exposure. Core genes associated with heat stress, the circadian clock and neurotransmitters were detected by QRT-PCR technology, and the contents of GABA and glutamate were detected by UPLC-MS. The results show that short-term RF-EMR exposure increased the activity level and reduced the sleep duration while long-term RF-EMR exposure reduced the activity level and increased the sleep duration of F1 male flies. Under long-term RF-EMR, the expression of heat stress response-related hsp22, hsp26 and hsp70 genes was increased, the expression of circadian clock-related per, cyc, clk, cry, and tim genes was altered, the content of GABA and glutamate was reduced, and the expression levels of synthesis, transport and receptor genes were altered. In conclusion, long-term RF-EMR exposure enhances the heat stress response of offspring flies and then affects the expression of circadian clock and neurotransmitter genes, which leads to decreased activity, prolonged sleep duration, and improved sleep quality.
Mostrar más [+] Menos [-]Iron-bearing nanoparticles trigger human umbilical vein endothelial cells ferroptotic responses by promoting intracellular iron level
2021
Liu, Zixuan | Xia, Xiaomin | Lv, Xuying | Song, Erqun | Song, Yang
Iron-bearing nanoparticles (IBNPs) were abundant in particulate matter (PM). Due to their high reactivity, IBNPs were considered hazardous to human health, however, their toxic mode-of-action(s) are highly unclear. Ferroptosis is a novel programmed cell death (PCD) that highly associated with intracellular iron. However, the pro-ferroptotic effect of IBNPs has not been characterized. To this end, we ought to investigate whether and how IBNPs (synthetic γ-Fe₂O₃ and Fe₃O₄ NPs were selected as the model compounds) are involved in ferroptosis. We found that human umbilical vein endothelial cells (HUVECs) phagocytized large qualities of γ-Fe₂O₃ and Fe₃O₄ NPs, resulting in increased intracellular iron level. We further observed the disrupted cystine/glutamate reverse transporter (System Xc⁻) and glutathione peroxidase 4 (GPX4) signaling in γ-Fe₂O₃ and Fe₃O₄ NPs-challenged HUVECs. γ-Fe₂O₃ and Fe₃O₄ NPs could also cause mitochondrial fusion and fission dysregulation, activate lipid peroxidation and iron metabolism-related genes in a P53-dependent manner. Together, the ferroptotic activity of IBNPs should be acknowledged for the risk assessment of PM associated health effects.
Mostrar más [+] Menos [-]