Refinar búsqueda
Resultados 1-10 de 95
Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health
2019
Weber, R. | Bell, L. | Watson, A. | Petrlik, J. | Paun, M.C. | Vijgen, J.
Persistent organic pollutants (POPs) including PCDD/Fs, PCBs and organochlorine pesticides (OCPs) are among the most important and hazardous pollutants of soil. Food producing animals such as chicken, beef, sheep and goats can take up soil while grazing or living outdoors (free-range) and this can result in contamination.In recent decades, large quantities of brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), short-chain chlorinated paraffins (SCCPs) and per- and polyfluorinated alkylated substances (PFAS) have been produced and released into the environment and this has resulted in widespread contamination of soils and other environmental matrices. These POPs also bioaccumulate and can contaminate food of animal origin resulting in indirect exposure of humans.Recent assessments of chicken and beef have shown that surprisingly low concentrations of PCBs and PCDD/Fs in soil can result in exceedances of regulatory limits in food. Soil contamination limits have been established in a number of countries for PCDD/Fs but it has been shown that the contamination levels which result in regulatory limits in food (the maximum levels in the European Union) being exceeded, are below all the existing soil regulatory limits. ‘Safe’ soil levels are exceeded in many areas around emission sources of PCDD/Fs and PCBs. On the other hand, PCDD/F and dioxin-like PCB levels in soil in rural areas, without a contamination source, are normally safe for food producing animals housed outdoors resulting in healthy food (e.g. meat, eggs, milk).For the majority of POPs (e.g. PBDEs, PFOS, PFOA, SCCP) no regulatory limits in soils exist.There is, therefore, an urgent need to develop appropriate and protective soil standards minimising human exposure from food producing animals housed outdoors. Furthermore, there is an urgent need to eliminate POPs pollution sources for soils and to control, secure and remediate contaminated sites and reservoirs, in order to reduce exposure and guarantee food safety.
Mostrar más [+] Menos [-]Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland
2018
Mitchell, R. J. (Ruth J.) | Hewison, Richard L. | Fielding, Debbie A. | Fisher, Julia M. | Gilbert, Diana J. | Hurskainen, Sonja | Pakeman, R. J. (Robin J.) | Potts, Jacqueline M. | Riach, David
The predicted long lag time between a decrease in atmospheric deposition and a measured response in vegetation has generally excluded the investigation of vegetation recovery from the impacts of atmospheric deposition. However, policy-makers require such evidence to assess whether policy decisions to reduce emissions will have a positive impact on habitats. Here we have shown that 40 years after the peak of SOₓ emissions, decreases in SOₓ are related to significant changes in species richness and cover in Scottish Calcareous, Mestrophic, Nardus and Wet grasslands. Using a survey of vegetation plots across Scotland, first carried out between 1958 and 1987 and resurveyed between 2012 and 2014, we test whether temporal changes in species richness and cover of bryophytes, Cyperaceae, forbs, Poaceae, and Juncaceae can be explained by changes in sulphur and nitrogen deposition, climate and/or grazing intensity, and whether these patterns differ between six grassland habitats: Acid, Calcareous, Lolium, Nardus, Mesotrophic and Wet grasslands. The results indicate that Calcareous, Mesotrophic, Nardus and Wet grasslands in Scotland are starting to recover from the UK peak of SOₓ deposition in the 1970's. A decline in the cover of grasses, an increase in cover of bryophytes and forbs and the development of a more diverse sward (a reversal of the impacts of increased SOₓ) was related to decreased SOₓ deposition. However there was no evidence of a recovery from SOₓ deposition in the Acid or Lolium grasslands. Despite a decline in NOₓ deposition between the two surveys we found no evidence of a reversal of the impacts of increased N deposition. The climate also changed significantly between the two surveys, becoming warmer and wetter. This change in climate was related to significant changes in both the cover and species richness of bryophytes, Cyperaceae, forbs, Poaceae and Juncaceae but the changes differed between habitats.
Mostrar más [+] Menos [-]Metal exposure in cows grazing pasture contaminated by iron industry: Insights from magnetic particles used as tracers
2016
Ayrault, Sophie | Catinon, Mickaël | Boudouma, Omar | Bordier, Louise | Agnello, Gregory | Reynaud, Stéphane | Tissut, Michel
Magnetic particles (MP) emitted by an iron smelter were used to investigate the exposure of cows grazing on a grassland polluted by these MP and by large amounts of potentially toxic elements (PTE). The morphology as well as the chemical composition of the MP separated from cow dung were studied. Large amounts of typical MP were found (1.1 g kg−1 dry weight) in the cow dung sampled from the exposed site, whereas these particles were absent from the reference unpolluted site. The ingested MP were mainly technogenic magnetic particles (TMP) emitted by the smelter. Considering the MP concentration in the grazed grass on the exposed site, it was concluded that cows absorb the MP not only from the grass but also from the soil surface. The results of a mild acidic leaching of the MP suggested that the particles were possibly submitted to a superficial dissolution in the abomasum, pointing at a potential route of transfer of the PTE originating from the TMP and leading into food chains. TMP were only a small part of the anthropogenic contamination having affected the soil and the dung. However, due to their unequivocal signature, TMP are a powerful tracer of the distribution of PTE in the different compartments constituting the food chains and the ecosystems. Furthermore, the measurement of the particle sizes gave evidence that a noticeable proportion of the MP could enter the respiratory tract.
Mostrar más [+] Menos [-]Year-round grazing to counteract effects of atmospheric nitrogen deposition may aggravate these effects
2014
van Dobben, H.F. | Wamelink, G.W.W. | Klimkowska, A. | Slim, P.A. | van Til, M.
Excessive nitrogen input in natural ecosystems is a major threat to biodiversity. A coastal dune area near Amsterdam in the Netherlands suffers from high atmospheric nitrogen deposition affecting sensitive habitats such as fixed coastal dunes with herbaceous vegetation (‘grey dunes’). To mitigate its effect year round grazing was applied from 2007 until 2012. In winter, when natural food supply is low, the cattle received supplementary hay that caused additional inputs of nitrogen. Estimates based on nitrogen contents of hay, as well as of manure, showed the input through winter feeding (c. 3–14 kg N ha−1.y−1) is in the same order of magnitude as both the actual deposition (c. 17 kg N ha−1.y−1) and the critical load for a number of herbaceous habitat types (10–15 kg N ha−1.y−1). Locally, the effect of winter feeding adds to the effect of nitrogen redistribution within the area caused by the cattle's terrain usage. We conclude that winter feeding may aggravate effects of atmospheric nitrogen deposition.
Mostrar más [+] Menos [-]Tracing decadal environmental change in ombrotrophic bogs using diatoms from herbarium collections and transfer functions
2013
Poulíčková, Aloisie | Hájková, Petra | Kintrová, Kateřina | Bat'ková, Romana | Czudková, Markéta | Hájek, Michal
Central European mountain bogs, among the most valuable and threatened of habitats, were exposed to intensive human impact during the 20th century. We reconstructed the subrecent water chemistry and water-table depths using diatom based transfer functions calibrated from modern sampling. Herbarium Sphagnum specimens collected during the period 1918–1998 were used as a source of historic diatom samples. We classified samples into hummocks and hollows according to the identity of dominant Sphagnum species, to reduce bias caused by uneven sampling of particular microhabitats. Our results provide clear evidence for bog pollution by grazing during the period 1918–1947 and by undocumented aerial liming in the early 90-ies. We advocate use of herbarized epibryon as a source of information on subrecent conditions in recently polluted mires.
Mostrar más [+] Menos [-]Modelling nitrous oxide emissions from grazed grassland systems
2012
Wang, Junye | Cardenas, Laura M. | Misselbrook, Tom H. | Cuttle, Steve | Thorman, R. E. (Rachel E.) | Li, Changsheng
Grazed grassland systems are an important component of the global carbon cycle and also influence global climate change through their emissions of nitrous oxide and methane. However, there are huge uncertainties and challenges in the development and parameterisation of process-based models for grazed grassland systems because of the wide diversity of vegetation and impacts of grazing animals. A process-based biogeochemistry model, DeNitrification-DeComposition (DNDC), has been modified to describe N₂O emissions for the UK from regional conditions. This paper reports a new development of UK-DNDC in which the animal grazing practices were modified to track their contributions to the soil nitrogen (N) biogeochemistry. The new version of UK-DNDC was tested against datasets of N₂O fluxes measured at three contrasting field sites. The results showed that the responses of the model to changes in grazing parameters were generally in agreement with observations, showing that N₂O emissions increased as the grazing intensity increased.
Mostrar más [+] Menos [-]Nitrogen budgets of contrasting crop-livestock systems in China
2021
Jin, Xinpeng | Zhang, Nannan | Zhao, Zhanqing | Bai, Zhaohai | Ma, Lin
The crop-livestock system is responsible for a large proportion of global reactive nitrogen (Nr) losses, especially from China. There are diverse livestock systems with contrasting differences in feed, livestock and manure management. However, it is not yet well understood which factors greatly impact on the nitrogen (N) budgets and losses of each system. In this study, we systematically evaluated the N budgets of the crop-livestock production system from 1980 to 2050 in China by identifying the differences of 20 distinct livestock systems. During 1980 to 2010, the total N flow through the crop-livestock system increased from 21.4 to 49.7 Tg, with large variations in different input/output pathways, due to the strong livestock transitions of production towards to a monogastric and landless industrial system. Different systems contributed differently to the total N budgets in 2010. For example, the landless industrial system contributed 67% of livestock product N output, but accounted for 80% of total mineral N fertilizer use and feed N imports by the whole crop-livestock system. The mixed system had the highest rate of N use efficiency at system level due to high dependence on recycled N. N losses were diversely distributed by different systems, with the mixed ruminant system responsible for the majority of NH₃–N emission in livestock production, and the grazing ruminant system dominant in NO₃–N losses in feed production. The total N entering the crop-livestock system is estimated to be 53.9 Tg with total N losses of 41.3 Tg in 2050 under a business-as-usual scenario. However, this amount could be significantly decreased through combined measures that indicate a considerable potential for future improvements. Overall, our results provide new insights into N use and the management of livestock production.
Mostrar más [+] Menos [-]The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils
2013
Brougham, Kate M. | Roberts, Stephen R. | Davison, A. (Alan) | Port, Gordon R.
Although a great deal is known about the deposition of fluoride on vegetation, and the hazards associated with uptake by grazing herbivores, little is known about what happens to the concentration of fluoride in vegetation and soil at polluted sites once deposition ceases. The closure of Anglesey Aluminium Metals Ltd smelter, in September 2009, provided a unique opportunity to study fluoride loading once deposition stopped. Fluoride was monitored in plants and soil within 1 km of the former emission source. Fluoride concentrations in a range of plant material had decreased to background levels of 10 mg F kg−1 after 36 weeks. Concentrations of fluoride in mineral-rich soils decreased steadily demonstrating their limited potential to act as contaminating sources of fluoride for forage uptake. There were significant differences in the rate of decline of fluoride concentrations between plant species.
Mostrar más [+] Menos [-]Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures
2013
Rhind, S.M. | Kyle, C.E. | Ruffie, H. | Calmettes, E. | Osprey, M. | Zhang, Z.L. | Hamilton, D. | McKenzie, C.
Temporal changes in soil burdens of selected endocrine disrupting compounds were determined following application to pasture of either sewage sludge or inorganic fertilizer. Soil polycyclic aromatic hydrocarbon and polychlorinated biphenyl concentrations were not altered. Changes in concentrations of diethylhexyl phthalate (DEHP) and PBDEs 47 and 99 differed with season but concentrations remained elevated for more than three weeks after application, when grazing animals are normally excluded from pasture. It is concluded that single applications of sewage sludge can increase soil concentrations of some, but not all classes of EDCs, possibly to concentrations sufficient to exert biological effects when different chemicals act in combination, but patterns of change depend on season and soil temperature. Analysis of soil from pasture subjected to repeated sludge applications, over 13 years, provided preliminary evidence of greater increases in soil burdens of all of the EDC groups measured, including all of the PBDE congeners measured.
Mostrar más [+] Menos [-]Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA
2002
Pasture management can be effective at sequestering soil organic C. We determined the depth distribution of particulate organic C (POC), non-particulate organic C (NPOC), particulate-to-total organic C (POC-to-TOC) ratio, and particulate organic C-to-N (POC-to-N) ratio under pastures near Watkinsville, GA, USA. POC was highly related with total organic C (TOC), but became an increasingly larger portion of TOC near the soil surface, where both pools were greatest. POC and NPOC were (i) greater under pasture than under conservation-tillage cropland, (ii) greater when pasture was grazed than when hayed, (iii) marginally greater with higher fertilization of pasture, (iv) greater with higher frequency of endophyte infection of tall fescue, and (v) greater under increasing stand age of grass. Soil under pasture comparisons that had greater TOC content had (i) larger improvements in POC than in NPOC and (ii) lower POC-to-N ratios, suggesting improvement in biochemical soil quality, as well as soil C sequestration.
Mostrar más [+] Menos [-]