Refinar búsqueda
Resultados 1-10 de 77
Fate and risk assessment of sulfonamides and metabolites in urban groundwater
2020
Jurado, Anna | Margareto, Alejandro | Pujades, Estanislao | Vázquez-Suñé, Enric | Díaz-Cruz, M. Silvia
Antibiotics, such as sulfonamides (SAs), have recently raised concern as wastewater treatment plants (WWTPs) partly remove them, and thus, SAs continuously enter the aquifers. In this context, the aims of this work are to (1) investigate the temporal evolution of SAs and metabolites in an urban aquifer recharged by a polluted river; (2) identify the potential geochemical processes that might affect SAs in the river-groundwater interface and (3) evaluate the ecological and human health risk assessment of SAs. To this end, 14 SAs and 4 metabolites were analyzed in river and urban groundwater from the metropolitan area of Barcelona (NE, Spain) in three different sampling campaigns. These substances had a distinct behavior when river water, which is the main recharge source, infiltrates the aquifer. Mixing of the river water recharge into the aquifer drives several redox reactions such as aerobic respiration and denitrification. This reducing character of the aquifer seemed to favor the natural attenuation of some SAs as sulfamethoxazole, sulfapyridine, and sulfamethizole. However, most of the SAs detected were not likely to undergo degradation and adsorption because their concentrations were constant along groundwater flow path. In fact, the intensity of SAs adsorption is low as the retardation factors are close to 1 at average groundwater pH of 7.2 for most SAs.Finally, risk quotients (RQs) are used to evaluate the ecological and human health risks posed by single and mixture of SAs in river water and groundwater, respectively. Life-stage RQs of the SAs detected in groundwater for the 8 age intervals were low, indicating that SAs and their mixture do not pose any risk to human beings. Concerning the environmental risk assessment, SAs do not pose any risk for algae, fish and crustaceans as the RQs evaluated are further lower than 0.1.
Mostrar más [+] Menos [-]Bacteriological and geochemical features of the groundwater resources: Kettara abandoned mine (Morocco)
2019
Zouhri, Lahcen | El Amari, Khalid | Marier, David | Benkaddour, Abdelfattah | Hibti, Mohamed
Waste water of the Kettara village, as well as the abandoned tailings, constitute a potential environmental issue with direct consequences on air, soil, water resources qualities and, on human health. In this paper, experimental investigations examine the environmental impact which is induced by the wastewater, mine tailings and the lithological factors of rocks. This multidisciplinary research allows to i) understand the transfer of the Metallic Trace Elements (selenium, arsenic, nickel and zinc) and sulfate ions in the fractured shales media, ii) to assess the water potability by using the microbiological analysis. The microbiological results reveal the domestic impact by the presence of several kinds of bacteria in the groundwater resources: E. coli, Fecal coliforms, Total coliforms, Enterococci, Mesophilic Aerobic Flora, Sulphite-reducing bacteria and Salmonella.Selenium, arsenic and the bacteriological contamination of the groundwater could be explained by five kinds of factors: i) the geological formations and the nature of the hydrogeological system (unconfined layer), ii) the groundwater flow, the hydraulic relation between the hydrogeological wells and, the fractures network in the shale aquifer. The piezometric map allows to highlight the groundwater flow from the North-East to North-West and to the South-West, the drainage axis towards the P21 well and the presence of the dividing axis in the contaminated zone by the arsenic, iii) the absence of the unhealthy habitats with permeable traditional septic tanks in the village; iv) the transfer of the spreading animal excrements from the soil to groundwater and, v) the migration of the wastewater towards downstream of the groundwater flow. The presence of the reed beds could explain the reduction of bacteria in the hydrogeological wells of the study area.
Mostrar más [+] Menos [-]Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco)
2017
Moyé, Julien | Picard-Lesteven, Tanguy | Zouhri, Lahcen | El Amari, Khalid | Hibti, Mohamed | Benkaddour, Abdelfattah
Many questions about the soil pollution due to mining activities have been analyzed by numerous methods which help to evaluate the dispersion of the Metallic Trace Elements (MTE) in the soil and stream sediments of the abandoned mine of Kettara (Morocco). The transport of these MTE could have an important role in the degradation of groundwater and the health of people who are living in the vicinity. The present paper aims to evaluate the groundwater samples from 15 hydrogeological wells. This evaluation concerns the hydrogeological parameters, pH, Electrical conductivity, temperature and the groundwater level, and the geochemical assessment of Mg, Ca, Ti, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Se, Cd, Sb, Tl and Pb. Furthermore, the Metallic Trace Elements are transported in the saturated zone via the fractures network. The groundwater flow is from the north-east to south-west. The spatial distribution of As, Fe, Zn and Mn is very heterogeneous, with high values observed in the north, upstream, of the mine site. This distribution is maybe related to: i) the existence of hydrogeological structures (dividing and drainage axes); ii) the individualization of the fractures network that affects the shaly lithostratigraphical formation; iii) the transport of the contaminants from the soil towards groundwater; and iv) interaction water/rocks. Some MTE anomalies are linked to the lithology and the fracturation system of the area. Therefore, the groundwater contamination by Arsenic is detected in the hydrogeological wells (E1 and E2). This pollution which is higher than guideline standards of Moroccan drinking water could affect the public health. The hydrogeological and geochemical investigations favor the geological origin (mafic rocks) of this contamination rather than mining activities.
Mostrar más [+] Menos [-]Source identification and management of perennial contaminated groundwater seepage in the highly industrial watershed, south India
2021
Surinaidu, L. | Nandan, M.J. | Sahadevan, D.K. | Umamaheswari, A. | Tiwari, V.M.
Perennial contaminated groundwater seepage is threatening the downstream ecosystem of the Kazipally Pharmaceutical industrial area located in South India. The sources of seepage are unknown for the last three decades that challenging the regulatory authorities and industries. In general, water quality monitoring and geophysical techniques are applied to identify the sources. However, these techniques may lead to ambiguous results and fail to identify the seepage sources, especially when the area is urbanized/paved, and groundwater is already contaminated with other leakage sources that have similar chemical compounds. In the present study, a novel and multidisciplinary approach were adopted that includes satellite-based Land Surface Temperature (LST) observations, field-based Electrical Resistivity Tomography (ERT), continuous Soil Electrical Conductivity (SEC) and Volumetric Soil Moisture (VSM%) measurements along with groundwater levels monitoring to identify the sources and to control the seepage. The integrated results identified that the locations with the Standard Thermal Anomaly (STA) in the range of −0.5 to -1 °C, VSM% >50%, SEC > 1.5 mS/cm, bulk resistivity < 12 Ω m with shallow groundwater levels < 3 m below ground level (bgl) are potentially contaminated perennial seepage sources. Impermeable sheet piles have been installed across the groundwater flow direction to control the seepage up to 1.5 m bgl, where groundwater frequently intercepts land surface. The quantity of dry season groundwater seepage has been declined by 79.2% after these interventions, which in turn minimized the treatment cost of 1,96,283 USD/year and improved the downstream ecosystem.
Mostrar más [+] Menos [-]Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil
2021
Borthakur, Annesh | Cranmer, Brian K. | Dooley, Gregory P. | Blotevogel, Jens | Mahendra, Shaily | Mohanty, Sanjay K.
Groundwater flow through aquifer soils or packed bed systems can fluctuate for various reasons, which could affect the concentration of natural colloids and per- and polyfluoroalkyl substances (PFAS) in the pore water. In such cases, PFAS concentration could either decrease due to matrix diffusion of PFAS or increase by the detachment of colloids carrying PFAS. Yet, the effect of flow fluctuation on PFAS transport or release in porous media has not been examined. To examine the relative importance of either process, we interrupted the flow during an injection of groundwater spiked with perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), and bromide as conservative tracer through clay-rich soil, so that diffusive transport would be prominent during flow interruption. After flow interruption, the PFAS concentration did not decrease indicating an insignificant contribution of matrix diffusion. The concentration increased, potentially due to enhanced release of colloid-associated PFAS. Analysis of samples before and after flow interruption by particle size analysis and SEM confirmed an increase in soil colloid concentration after the flow interruption. XRD analysis of soil and the colloids proved that PFAS were associated with specific sites of the colloids. Due to a higher affinity of PFOA to soil colloids, the total PFOA concentration in the effluent samples increased more than PFBA after the flow interruption process. The results indicate that colloids may have a disproportionally higher role in the transport of PFAS in conditions that release colloids from porous media. Thus, fluctuations in groundwater flow can increase this colloid facilitated mobility of PFAS.
Mostrar más [+] Menos [-]Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from central Italy: Quality indexes for management of the water resource
2019
Cinti, D. | Vaselli, O. | Poncia, P.P. | Brusca, L. | Grassa, F. | Procesi, M. | Tassi, F.
659 water samples from springs and wells in the Sabatini and Vicano-Cimino Volcanic Districts (central Italy) were analyzed for arsenic (As), fluoride (F⁻) and radon (²²²Rn) concentrations. Waters mostly sourced from a shallow and cold aquifer hosted within volcanic rocks, which represents the main public drinking water supply. Cold waters from perched aquifers within sedimentary formations and thermal waters related to a deep hydrothermal reservoir were also analyzed. The highest concentrations of As and F⁻ were measured in the thermal waters and attributed to their enhanced mobility during water-rock interaction processes at hydrothermal temperatures. Relatively high concentrations of As and F⁻ were also recorded in those springs and wells discharging from the volcanic aquifer, whereas waters hosted in the sedimentary units showed significantly lower contents. About 60% (As) and 25% (F⁻) of cold waters from the volcanic aquifer exceeded the maximum allowable concentrations for human consumption. Such anomalously high levels of geogenic pollutants were caused by mixing with fluids upwelling through faulted zones from the hydrothermal reservoir. Chemical weathering of volcanic rocks and groundwater flow path were also considered to contribute to the observed concentrations. Cold waters from the volcanic aquifer showed the highest ²²²Rn concentrations, resulting from the high contents of Rn-generating radionuclides in the volcanic units. Approximately 22% of these waters exceeded the recommended value for human consumption. A specific Quality Index (QI), comprised between 1 (very low) and 4 (very high), was computed for each water on the basis of As, F⁻ and ²²²Rn concentrations and visualized through a spatial distribution map processed by means of geostatistical techniques. This map and the specific As, F⁻ and ²²²Rn maps can be regarded as useful tools for water management by local authorities to both improve intervention plans in contaminated sectors and identify new water resources suitable for human consumption.
Mostrar más [+] Menos [-]Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model
2021
Torres Martínez, Juan Antonio | Mora, Abrahan | Mahlknecht, Jürgen | Daesslé, Luis W. | Cervantes-Avilés, Pabel A. | Ledesma-Ruiz, Rogelio
The identification of nitrate (NO₃⁻) sources and biogeochemical transformations is critical for understanding the different nitrogen (N) pathways, and thus, for controlling diffuse pollution in groundwater affected by livestock and agricultural activities. This study combines chemical data, including environmental isotopes (δ²HH₂O, δ¹⁸OH₂O, δ¹⁵NNO₃, and δ¹⁸ONO₃), with land use/land cover data and a Bayesian isotope mixing model, with the aim of reducing the uncertainty when estimating the contributions of different pollution sources. Sampling was taken from 53 groundwater sites in Comarca Lagunera, northern Mexico, during 2018. The results revealed that the NO₃⁻ (as N) concentration ranged from 0.01 to 109 mg/L, with more than 32% of the sites exceeding the safe limit for drinking water quality established by the World Health Organization (10 mg/L). Moreover, according to the groundwater flow path, different biogeochemical transformations were observed throughout the study area: microbial nitrification was dominant in the groundwater recharge areas with elevated NO₃⁻ concentrations; in the transition zones a mixing of different transformations, such as nitrification, denitrification, and/or volatilization, were identified, associated to moderate NO₃⁻ concentrations; whereas in the discharge area the main process affecting NO₃⁻ concentrations was denitrification, resulting in low NO₃⁻ concentrations. The results of the MixSIAR isotope mixing model revealed that the application of manure from concentrated animal-feeding operations (∼48%) and urban sewage (∼43%) were the primary contributors of NO₃⁻ pollution, whereas synthetic fertilizers (∼5%), soil organic nitrogen (∼4%), and atmospheric deposition played a less important role. Finally, an estimation of an uncertainty index (UI90) of the isotope mixing results indicated that the uncertainties associated with atmospheric deposition and NO₃⁻−fertilizers were the lowest (0.05 and 0.07, respectively), while those associated with manure and sewage were the highest (0.24 and 0.20, respectively).
Mostrar más [+] Menos [-]Delineating the origins and processes of groundwater salinization and quality degradation in a coastal irrigated plain, Korba (Northeastern Tunisia)
2022
Slama, Fairouz | Nasri, Nesrine | Bouhlila, Rachida
From 2006 to 2020, groundwater investigations were conducted in the Korba coastal aquifer in northern Tunisia along two flow paths (transects S1 and S2), perpendicular to the shoreline. Groundwater sampling, hydrodynamic monitoring, and electrical tomography imaging were performed in situ. Geochemical analysis (Ionic ratios, ionic deltas, conventional diagrams, and stable isotopes) and modelling using PHREEQC, and multivariate statistical analysis were applied. The objective was to identify the potential origin of groundwater salinization (i.e., high TDS and NO₃) and to study associated processes. The groundwater flow inversion was corroborated by the piezometric survey in transect S1, where a piezometric depression of 5 m was detected at 4000 m from the seashore. Seawater intrusion and agricultural contamination, mainly through N-fertilizers, both contribute to groundwater mineralization and consequently salinization, according to PCA analysis. The impacted geochemical area of seawater intrusion was estimated to be 4000 and 1500 m, respectively, along transect S1 and transect S2. Inversely, agricultural contamination acts in internal areas beginning at 2000 m and 1500 m from the shoreline for S1 and S2, respectively. Results of different scenarios of inverse geochemical modelling along flow paths indicated that mixing, ion exchange, dissolution of gypsum, and precipitation of dolomite and calcite are the main processes controlling the groundwater composition in the coastal study area.
Mostrar más [+] Menos [-]A pilot study on remediation of muddy tidal flat using porous pile
2017
Ryu, Sung-Hoon | Nakashita, Shinya | Lee, In-Cheol | Kim, Dong-Sun | Kim, Jong Ryol | Hibino, Tadashi | Yamamoto, Tamiji | Asaoka, Satoshi | Kim, Kyunghoi
In order to prove that porous piles are effective in remediating muddy tidal flat sediments and increasing the biomass, field experiments were carried out at the tidal flat of a brackish river located in Hiroshima City, Japan. Porous piles with a diameter of 16cm and height of 50cm were installed in the muddy sediment that covers the sand layer of the tidal flat. After installation, concentrations of dissolved oxygen in interstitial water in and around the porous piles increased to a maximum concentration of 6mg/l due to enhancement of the groundwater flow. The increase of dissolved oxygen in the interstitial water produced a decrease in the concentration of ammonia and an increase in the individual number of benthos at the porous pile site. From these results, we concluded that the porous pile is an effective technology for remediation of muddy tidal flats.
Mostrar más [+] Menos [-][Use of an air flow model for dimensioning in-situ plants (vacuum extraction) [MODAIR]]
1998
Hansen, M.C.