Refinar búsqueda
Resultados 1-10 de 39
Chronological Study of Metallic Pollution Using Tree Rings at Tema Industrial Area
2021
Edusei, G. | Tandoh, J. B. | Edziah, R. | Gyampo, O. | Ahiamadjie, H.
Tree rings have been used to reconstruct past climates as well as to assess the effects of recent climatic and environmental changes on tree growth. Industrial emission is one of the major sources of pollutants in the atmosphere. This study determined heavy metals pollution chronologies from industrial emissions in the atmosphere of the Tema industrial area of Ghana using tree-rings as bio-indicators. Swietenia mahagoni (Mahogany) tree was bored and the rings counted and age determined to be 50 years spanning from 1968 to 2018. Tree growth rates were calculated through ring width measurements and related to annual precipitation data spanning over the sampling period. It was observed that wet seasons correlate with high growth rates of trees while low precipitation seasons correspond to low or no growth rate of trees. Energy Dispersive X-ray fluorescence (EDXRF) was used to investigate the presence and concentration of the four heavy metals (Cu, Zn, Fe and Pb). Concentration of Cu, Zn, Fe and Pb ranged from (1.92—6.70 mg/kg), (5.37 – 13.9 mg/kg), (0.10 – 0.36 mg/kg) and (12.13—90.13 mg/kg), respectively. Surprisingly, an increasing trend in concentration was observed for Zn and Cu with levels higher than the WHO guideline for heavy metals in the plant.
Mostrar más [+] Menos [-]The tree-ring mercury record of Klondike gold mining at Bear Creek, central Yukon
2021
Clackett, Sydney P. | Porter, Trevor J. | Lehnherr, Igor
Use of elemental mercury (Hg⁰) to enhance placer gold recovery is an effective method dating back centuries, but is associated with significant atmospheric Hg⁰ losses. This method was widely used in the Canadian Klondike region during most of the 20th century when the mining industry experienced rapid growth. While the health risks associated with Hg⁰ pollution are now well understood, few studies have assessed the environmental legacy of Hg⁰ use in the Klondike. We used an annually resolved Picea glauca tree-ring Hg record (1864–2015) to reconstruct and evaluate changes in local atmospheric Hg⁰ concentrations associated with gold production at the Bear Creek mining camp. Major temporal trends in the record are consistent with the scale of Bear Creek operations and are distinct from background trends at an unimpacted control site. Tree-ring Hg concentration increased most rapidly from 1923 to 1930, a period when several major mining operations were consolidated at Bear Creek. The highest Hg concentrations, ∼2.5× greater than pre-mining era, occurred in the 1930s, coinciding with maximum gold production at this site. Post-World War II economic factors adversely affected the industry, causing declining tree-ring Hg concentrations from 1939 to 1966. Closure of the Bear Creek camp in 1966 coincided with the strongest tree-ring Hg decline, although a return to background levels did not occur until the 1990s, likely due to re-emission of legacy Hg⁰ from contaminated soils. Finally, a robust increase was observed over the last decade, similar to other tree-ring Hg records in N.W. Canada, which is linked to rising Hg⁰ emissions in Asia. The Bear Creek tree-ring Hg record provides a unique opportunity to study the impact of Klondike gold mining on the local environment at annual resolution and demonstrates great potential to use Picea tree rings to study past changes in atmospheric Hg⁰ from local and global emissions.A 151-year long, annually resolved tree-ring Hg record was developed at a historic Klondike gold-mining site to investigate the influence of mining-related Hg⁰ emissions on the local atmosphere and environment. Compared to a control site, the tree-ring Hg record documents highly elevated atmospheric Hg⁰ concentrations during the period mining activities were ongoing at this site.
Mostrar más [+] Menos [-]Elevated cadmium pollution since 1890s recorded by forest chronosequence in deglaciated region of Gongga, China
2020
Wang, Xun | Luo, Ji | Lin, Che-Jen | Wang, Dingyong | Yuan, Wei
Ice and sediment cores, peat bogs and tree rings are useful proxy records for reconstructing historical air pollution events. However, these indirect measurements are subject to interferences caused by environmental perturbations including global climate change. Therefore, using multiple proxy records has advantages in constraining the analytical findings. In this study, we utilized the chronological record of atmospheric deposition preserved in vegetation succession ecosystems in the deglaciated region for reconstructing historical pollution events. The rate of Cd accumulation in the forest chronosequence zone was investigated in a deglaciated area of the Tibetan Plateau. The results obtained through this novel approach are consistent with the variations of Cd concentration recorded in tree-ring, showing a 4–7 times increase of atmospheric Cd deposition from the 1890s to the early 1970s followed by a decrease from the mid-1970s–2000s. The Cd pollution record indicates that elevated atmospheric Cd release occurred in regions of Southwest China and South Asia due to the rapid industrial development until 1970 followed by coordinated efforts in controlling air emissions after mid-1970s.
Mostrar más [+] Menos [-]Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region
2018
Rodríguez Martin, José Antonio | Gutiérrez, Carmen | Torrijos, Manuel | Nanos, Nikos
Natural levels of heavy metals (HM) have increased during the industrial era to the point of posing a serious threat to the environment. The use of tree species to record contamination is a well-known practice. The objective of the study was to compare HM levels under different pollution conditions: a) soil pollution due to mining waste; b) atmospheric pollution due to coal-fired power plant emissions. We report significant HM enrichment in Pinus halepensis tissues. Near a burning power plant, Pb content in a tree wood was 2.5-fold higher that in natural areas (no pollution; NP). In mining areas, Cd content was 25-fold higher than NP. The hypothesis that HM contents in tree rings should register pollution is debatable. HM uptake by pines from soil, detoxification mechanisms and resuspended local soil dust is involved in HM contents in wood and bark.
Mostrar más [+] Menos [-]Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians
2014
Bošeľa, Michal | Petráš, Rudolf | Sitková, Zuzana | Priwitzer, Tibor | Pajtík, Jozef | Hlavatá, Helena | Sedmák, Róbert | Tobin, Brian
Silver fir is one of the most productive and ecologically valuable native European tree species, however, it has been experiencing decline which has periodically occurred over its natural range. This paper aims to investigate the recent climate–growth relationships of silver fir (Abies alba Mill.) and its temporal change along the course of its life. Long-term tree-ring databases, as well as records on climate, atmospheric SO2, NO3 and acid concentrations from four different regions in the Western Carpathians were used. The results provide clear evidence of significant increase of silver fir's radial increment over the entire Western Carpathian area since 1970–1980. The results indicated that the most probable factors behind the rapid recovery of tree radial increment were reductions in emissions of NO3 and SO2, alongside a significant increase in mean June, July and April temperatures.
Mostrar más [+] Menos [-]Rapid recovery of stem increment in Norway spruce at reduced SO₂ levels in the Harz Mountains, Germany
2012
Hauck, Markus | Zimmermann, Jorma | Jacob, Mascha | Dulamsuren, Choimaa | Bade, Claudia | Ahrends, Bernd | Leuschner, Christoph
Tree-ring width of Picea abies was studied along an altitudinal gradient in the Harz Mountains, Germany, in an area heavily affected by SO₂-related forest decline in the second half of the 20th century. Spruce trees of exposed high-elevation forests had earlier been shown to have reduced radial growth at high atmospheric SO₂ levels. After the recent reduction of the SO₂ load due to clean air acts, we tested the hypothesis that stem growth recovered rapidly from the SO₂ impact. Our results from two formerly damaged high-elevation spruce stands support this hypothesis suggesting that the former SO₂-related spruce decline was primarily due to foliar damage and not to soil acidification, as the deacidification of the (still acidic) soil would cause a slow growth response. Increasing temperatures and deposited N accumulated in the topsoil are likely additional growth-promoting factors of spruce at high elevations after the shortfall of SO₂ pollution.
Mostrar más [+] Menos [-]Tree-ring stable isotopes and historical perspectives on pollution – An overview
2010
Savard, Martine M.
Hydrogen (δ2H), carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) isotopes of tree rings growing in field conditions can be indicative of past pollution effects. The characteristic δ13C trend is a positive shift generally explained by invoking closure of stomata, but experimental studies suggest that increased rates of carboxylation could also generate such trends. In many cases the δ18O and δ2H values decrease in trees exposed to pollution and exhibit inverse coinciding long-term trends with δ13C values. However, some trees exposed to diffuse pollution and experimental conditions can show an increase or no δ18O change even if δ13C values increase. These diverse responses depend on how stress conditions modify physiological functions such as stomatal conductance, carboxylation, respiration, and perhaps water assimilation by the root system. Recent studies suggest that δ15N changes in trees can be caused by soil acidification and accumulation of anthropogenic emissions with isotopic signals deviating from natural N.
Mostrar más [+] Menos [-]Reconstructing atmospheric Hg levels near the oldest chemical factory in central Europe using a tree ring archive
2022
Nováková, Tereza | Navratil, Tomas | Schütze, Martin | Rohovec, Jan | Matoušková, Šárka | Hošek, Michal | Matys Grygar, Tomáš
The Chemical Factory in Marktredwitz (CFM) is known as the oldest chemical factory in Germany (1778–1985), and from the beginning of the 20ᵗʰ century focused primarily on the production of mercury (Hg) compounds. Due to extensive pollution, together with employee health issues, the CFM was shut in 1985 by a government order and remediation works proceeded from 1986 to 1993. In this study, tree ring archives of European Larch (Larix decidua Mill.) were used to reconstruct changes of air Hg levels near the CFM. Mercury concentrations in larch boles decreased from 80.6 μg kg⁻¹ at a distance of 0.34 km–3.4 μg kg⁻¹ at a distance of 16 km. The temporal trend of atmospheric Hg emissions from the CFM reconstructed from the tree ring archives showed two main peaks. The first was in the 1920s, with a maximum tree ring Hg concentration 249.1 ± 43.9 μg kg⁻¹ coinciding with when the factory had a worldwide monopoly on the production of Hg-based seed dressing fungicide. The second peak in the 1970s, with a maximum tree ring Hg concentration of 116.4 ± 6.3 μg kg⁻¹, was associated with a peak in the general usage and production of Hg chemicals and goods. We used the tree ring record to reconstruct past atmospheric Hg levels using a simple model of Hg distribution between the larch tree rings and atmosphere. The precision of the tree ring model was checked against the results of air Hg measurements during the CFM remediation 30 years ago. According to the tree ring archives, the highest air Hg concentrations in the 1920s in Marktredwitz were over 70 ng m⁻³. Current air Hg levels of 1.18 ng m⁻³, assessed in the city of Marktredwitz, indicate the lowest air Hg in the past 150 years, underscoring the effective remediation of the CFM premises 30 years ago.
Mostrar más [+] Menos [-]Spatial-temporal variability of metal pollution across an industrial district, evidencing the environmental inequality in São Paulo
2020
Locosselli, Giuliano Maselli | Moreira, Tiana Carla Lopes | Chacón-Madrid, Katherine | Arruda, Marco Aurélio Zezzi | Camargo, Evelyn Pereira de | Kamigauti, Leonardo Yoshiaki | da Trindade, Ricardo Ivan Ferreira | Andrade, Maria de Fátima | André, Carmen Diva Saldiva de | André, Paulo Afonso de | Singer, Julio M. | Saiki, Mitiko | Zaccarelli-Marino, Maria Angela | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Buckeridge, Marcos Silveira
Although air pollution decreased in some cities that shifted from an industrial to a service-based economy, and vehicular emission regulation became more restrictive, it is still a major risk factor for mortality worldwide. In central São Paulo, Brazil, air quality monitoring stations and tree-ring analyses revealed a decreasing trend in the concentrations of particulate matter and metals. Such trends, however, may not be observed in industrial districts located in the urban periphery, where the usual mobile sources may be combined with local stationary sources. To evaluate environmental pollution in an industrial district in southeastern São Paulo, we assessed its spatial variability, by measuring magnetic properties and concentrations of Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Sr, Zn in the bark of 62 trees, and its temporal trends, by measuring Cd, Cu, Ni, Pb, V, Zn in tree rings of three trees. Source apportionment analysis based on tree barks revealed two clusters with high concentrations of metals, one related to vehicular and industrial emissions (Al, Ba, Cu, Fe, Zn) in the east side of the industrial cluster, and the other related to soil resuspension (Cu, Zn, Mn) in its west side. These patterns are also supported by the magnetic properties of bark associated with iron oxides and titanium-iron alloy concentrations. Dendrochemical analyses revealed that only the concentrations of Pb consistently decreased over the last four decades. The concentrations of Cd, Cu, Ni, V, and Zn did not significantly decrease over time, in contrast with their negative trends previously reported in central São Paulo. This combined biomonitoring approach revealed spatial clusters of metal concentration in the vicinity of this industrial cluster and showed that the local population has not benefited from the decreasing polluting metal concentrations in the last decades.
Mostrar más [+] Menos [-]Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil
2018
Locosselli, Giuliano Maselli | Chacón-Madrid, Katherine | Arruda, Marco Aurélio Zezzi | Pereira de Camargo, Evelyn | Lopes Moreira, Tiana Carla | Saldiva de André, Carmen Diva | André, Paulo Afonso de | Singer, Julio M. | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Buckeridge, Marcos Silveira
The concern about environmental pollution has risen in the last decades because of its effects on human's health. However, evaluation of the exposure to certain pollutants is currently hampered by the availability of past environmental data. Tree rings are an alternative to reconstruct environmental variability of pre-instrumental periods. Nevertheless, this approach has some reported limitations including migration of chemical elements in the tree rings. The aim of this study was to evaluate the distribution of Cd, Cu, Hg, Na, Ni, Pb, Zn in the tree rings of Tipuana tipu (Fabaceae) to aid the reconstruction of past environmental pollution. We sampled trees in the central region of the city of São Paulo, Brazil, and scanned their tree rings using LA-ICP-MS. We used these data to evaluate the temporal trends of chemical elements under investigation. Results show a non-random distribution of these chemical elements within the tree rings, with higher content in the cell-walls of vessels and lower content in the fibers. Sodium was the only element intimately related to the axial parenchyma cells. Due to differences in elemental composition of xylem cells, temporal trends where evaluated using distinct quartiles of data distribution in each tree ring. The first quartile represents the lower content found in fibers and parenchyma, while the third quartile corresponds to the higher content found in vessels. Data from vessels better represent the decreasing trend of Cd, Cu, Pb, and Ni in the last three decades. This reduction is less significant for Na and Zn. Our results highlight the potential to improve the records of environmental pollution using data from different cells. Pronounced reduction in Pb may be attributed to the lead phase-out in gasoline, while the decreasing trend of Cd, Cu, Ni pollution is probably related to increasing efficiency of vehicles and the deindustrialization of São Paulo.Chemical elements are non-randomly distributed in tree rings. Chemical content of vessels cell-walls is a reliable record of metal pollution, which is decreasing in São Paulo.
Mostrar más [+] Menos [-]