Refinar búsqueda
Resultados 1-10 de 167
The current state of microplastic pollution in the world's largest gulf and its future directions Texto completo
2021
Shruti, V.C. | Pérez-Guevara, Fermín | Kutralam-Muniasamy, Gurusamy
Microplastics can have several negative consequences on a variety of organisms, and their prevalence in marine ecosystems has become a major concern. Researchers have recently focused their attention on the world's largest gulf, the Gulf of Mexico (GoM), to determine and assess the impact of microplastic pollution on various environmental compartments (i.e., water, sediment, and biota). This paper critically reviews the analytical methodologies as well as summarizes the distribution, accumulation, sources, and composition of microplastics in a handful of studies (n = 14) conducted in the Gulf of Mexico (GoM) covering countries like the USA (n = 10) and Mexico (n = 4). Current quality control measures with respect to sampling and microplastic extraction are summarized. Of 14 studies reviewed, 47% primarily focused on examining sediments for microplastics, with biota and water comprising 35% and 18%, respectively. The abundance ranged from 31.7 to 1392 items m⁻² and 60–1940 items kg⁻¹ in sediment, 12–381 particles L⁻¹ in water, and 1.31–4.7 particles per fish in biota. Irregular shaped fragments were the most abundant, followed by fiber, film, foam, hard, and beads etc. Different polymer types of microplastics have been found, including polyethylene, polypropylene, polystyrene, polyamide, nylon, and rayon etc. According to published research, 46 out of 100 fish thriving in this region are susceptible to microplastic ingestion. Although microplastic concentration in the GoM is among the highest found worldwide, the determination of microplastic contamination is still a growing field of research and methodological discrepancies largely limit the realization of establishing a baseline information on the microplastic abundance of the GoM. In this respect, considerable efforts must be dedicated towards evaluating their distribution and exposure levels; thereby, major challenges and future research directions are briefly discussed.
Mostrar más [+] Menos [-]Microplastic distribution in urban vs pristine mangroves: Using marine sponges as bioindicators of environmental pollution Texto completo
2021
Celis-Hernández, Omar | Ávila, Enrique | Ward, Raymond D. | Rodríguez-Santiago, María Amparo | Aguirre-Téllez, José Alberto
Sessile benthic organisms are considered good bioindicators for monitoring environmental quality of coastal ecosystems. However, these environments are impacted by new pollutants such as microplastics (MPs), where there is limited information about organisms that can be used as reliable bioindicators of these emerging contaminants. We evaluated MP concentrations in three compartments: surface sediment, water and in three marine sponge species (Haliclona implexiformis, Halichondria melanadocia and Amorphinopsis atlantica), to determine whether these organisms accumulate MPs and reflect their possible sources. Results showed MPs in all three compartments. Average concentrations ranged from 1861 to 3456 items kg⁻¹ of dry weight in marine sponges, 130 to 287 items L⁻¹ in water and 6 to 11 items kg⁻¹ in sediment. The maximum MP concentration was in the sponge A. atlantica, which registered 5000 items kg⁻¹ of dry weight, in water was 670 items L⁻¹ and in sediment was 28 items kg⁻¹, these values were found in the disturbed study area. The three sponge species exhibited MP bioaccumulation and showed significant differences between disturbed and pristine sites (F = 11.2, p < 0.05), suggesting their use as bioindicators of MP.
Mostrar más [+] Menos [-]Use of chemical concentration changes in coastal sediments to compute oil exposure dates Texto completo
2020
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical contaminant concentrations along coastlines. When concentrations are measured along the Gulf of Mexico over time, this information can be used to evaluate oil spill shoreline exposure dates. The objective of this research was to identify more accurate oil exposure dates based on oil spill chemical concentrations changes (CCC) within sediments in coastal zones after oil spills. The results could be used to help improve oil transport models and to improve estimates of oil landings within the nearshore. The CCC method was based on separating the target coastal zone into segments and then documenting the timing of large increases in concentration for specific oil spill chemicals (OSCs) within each segment. The dataset from the Deepwater Horizon (DWH) oil spill was used to illustrate the application of the method. Some differences in exposure dates were observed between the CCC method and between oil spill trajectories. Differences may have been caused by mixing at the freshwater and sea water interface, nearshore circulation features, and the possible influence of submerged oil that is unaccounted for by oil spill trajectories. Overall, this research highlights the benefit of using an integrated approach to confirm the timing of shoreline exposure.
Mostrar más [+] Menos [-]Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event Texto completo
2018
Schwing, Patrick T. | Chanton, Jeffrey P. | Romero, Isabel C. | Hollander, David J. | Goddard, Ethan A. | Brooks, Gregg R. | Larson, Rebekka A.
Following the Deepwater Horizon (DWH) event in 2010, hydrocarbons were deposited on the continental slope in the northeastern Gulf of Mexico through marine oil snow sedimentation and flocculent accumulation (MOSSFA). The objective of this study was to test the hypothesis that benthic foraminiferal δ13C would record this depositional event. From December 2010 to August 2014, a time-series of sediment cores was collected at two impacted sites and one control site in the northeastern Gulf of Mexico. Short-lived radioisotopes (210Pb and 234Th) were employed to establish the pre-DWH, DWH, and post-DWH intervals. Benthic foraminifera (Cibicidoides spp. and Uvigerina spp.) were isolated from these intervals for δ13C measurement. A modest (0.2–0.4‰), but persistent δ13C depletion in the DWH intervals of impacted sites was observed over a two-year period. This difference was significantly beyond the pre-DWH (background) variability and demonstrated that benthic foraminiferal calcite recorded the depositional event. The longevity of the depletion in the δ13C record suggested that benthic foraminifera may have recorded the change in organic matter caused by MOSSFA from 2010 to 2012. These findings have implications for assessing the subsurface spatial distribution of the DWH MOSSFA event.
Mostrar más [+] Menos [-]Homing pigeons externally exposed to Deepwater Horizon crude oil change flight performance and behavior Texto completo
2017
Perez, Cristina R. | Moye, John K. | Cacela, Dave | Dean, Karen M. | Pritsos, Chris A.
The Deepwater Horizon oil spill was the largest in U.S. history, contaminating thousands of miles of coastal habitat and affecting the lives of many avian species. The Gulf of Mexico is a critical bird migration route area and migrants that were oiled but did not suffer mortality as a direct result of the spill faced unpredictable fates. This study utilized homing pigeons as a surrogate species for migratory birds to investigate the effects a single low level external oiling event has on the flight performance and behavior of birds flying repeated 161 km flights. Data from GPS data loggers showed that lightly oiled pigeons changed their flight paths, increased their flight durations by 2.6 fold, increased their flight distances by 28 km and subsequently decreased their route efficiencies. Oiled birds also exhibited reduced rate of weight gain between flights. Our data suggest that contaminated birds surviving the oil spill may have experienced flight impairment and reduced refueling abilities, likely reducing overall migration speed. Our findings contribute new information on how oil spills affect avian species, as the effects of oil on the flight behavior of long distance free-flying birds have not been previously described.
Mostrar más [+] Menos [-]Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments Texto completo
2016
Adhikari, Puspa L. | Maiti, Kanchan | Overton, Edward B. | Rosenheim, Brad E. | Marx, Brian D.
Sediment samples collected from shelf, slope and interior basin of the northern Gulf of Mexico during 2011–2013, 1–3 years after the Deepwater Horizon (DWH) oil spill, were utilized to characterize PAH pollution history, in this region. Results indicate that the concentrations of surface ΣPAH43 and their accumulation rates vary between 44 and 160 ng g−1 and 6–55 ng cm−2 y−1, respectively. ΣPAH43 concentration profiles, accumulation rates and Δ14C values are significantly altered only for the sediments in the immediate vicinity of the DWH wellhead. This shows that the impact of DWH oil input on deep-sea sediments was generally limited to the area close to the spill site. Further, the PAHs source diagnostic analyses suggest a noticeable change in PAHs composition from higher to lower molecular weight dominance which reflects a change in source of PAHs in the past three years, back to the background composition. Results indicate low to moderate levels of PAH pollution in this region at present, which are unlikely to cause adverse effects on benthic communities.
Mostrar más [+] Menos [-]Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill Texto completo
2016
Dincer Kırman, Zeynep | Sericano, José L. | Wade, Terry L. | Bianchi, Thomas S. | Marcantonio, Franco | Kolker, Alexander S.
In 2010, an estimate 4.1 million barrels of oil were accidentally released into the Gulf of Mexico (GoM) during the Deepwater Horizon (DWH) Oil Spill. One and a half years after this incident, a set of subtidal and intertidal marsh sediment cores were collected from five stations in Barataria Bay, Louisiana, USA, and analyzed to determine the spatial and vertical distributions and source of hydrocarbon residues based on their chemical composition. An archived core, collected before the DWH oil spill from the same area, was also analyzed to assess the pre-spill hydrocarbon distribution in the area. Analyses of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and stable carbon isotope showed that the distribution of petroleum hydrocarbons in Barataria Bay was patchy and limited in areal extent. Significant TPH and ΣPAH concentrations (77,399 μg/g and 219,065 ng/g, respectively) were detected in the surface sediments of one core (i.e., core A) to a depth of 9 cm. Based on a sedimentation rate of 0.39 cm yr−1, determined using 137Cs, the presence of anthropogenic hydrocarbons in these sediment core deposited ca. 50 to 60 years ago. The historical background hydrocarbon concentrations increased significantly at the sediment surface and can be attributed to recent inputs. Although the oil present in the bay's sediments has undergone moderate weathering, biomarker analyses performed on core A samples likely indicated the presence of hydrocarbons from the DWH oil spill. The effects of oiling events on Barataria Bay and other marsh ecosystems in this region remain uncertain, as oil undergoes weathering changes over time.
Mostrar más [+] Menos [-]A sensitive crude oil bioassay indicates that oil spills potentially induce a change of major nitrifying prokaryotes from the Archaea to the Bacteria Texto completo
2012
Urakawa, Hidetoshi | Garcia, Juan C. | Barreto, Patricia D. | Molina, Gabriela A. | Barreto, Jose C.
The sensitivity of nitrifiers to crude oil released by the BP Deepwater Horizon oil spill in Gulf of Mexico was examined using characterized ammonia-oxidizing bacteria and archaea to develop a bioassay and to gain further insight into the ecological response of these two groups of microorganisms to marine oil spills. Inhibition of nitrite production was observed among all the tested ammonia-oxidizing organisms at 100ppb crude oil. Nitrosopumilus maritimus, a cultured representative of the abundant Marine Group I Archaea, showed 20% inhibition at 1 ppb, a much greater degree of sensitivity to petroleum than the tested ammonia-oxidizing and heterotrophic bacteria. The differing susceptibility may have ecological significance since a shift to bacterial dominance in response to an oil spill could potentially persist and alter trophic interactions influenced by availability of different nitrogen species.
Mostrar más [+] Menos [-]Regional variation in mercury bioaccumulation among NW Atlantic Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish Texto completo
2021
Roose, Hunter | Paterson, Gordon | Frisk, Michael G. | Cerrato, Robert M. | Nitschke, Paul | Olin, Jill A.
Mercury (Hg) concentrations in fishes from the NW Atlantic Ocean pose concern due to the importance of this region to U.S. fisheries harvest. In this study, total Hg (THg) concentrations and nitrogen stable isotope (δ¹⁵N) values were quantified in muscle tissues sampled from Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish collected during a fishery-independent survey conducted in the NW Atlantic to compare bioaccumulation patterns between these species. Total Hg concentrations averaged (±SD) 0.4 ± 0.4 μg/g dry weight (d.w.) for L. chamaeleonticeps and 1.1 ± 0.7 μg/g d.w. for C. microps with <2% of all sampled fish, those >70 cm fork length, exceeding the most restrictive USEPA regulatory guidelines for human consumption (THg > 0.46 μg/g w.w.), when converted to wet weight concentrations. The THg concentrations reported here for individuals from the NW Atlantic stock are comparable to those reported for similarly sized individuals collected from the SW Atlantic stock but notably lower than those reported for Gulf of Mexico L. chamaeleonticeps, indicating different Hg exposure and assimilation kinetics for fish from the NW Atlantic, and highlights the broad geographic variability of Hg bioaccumulation among Tilefish stocks. Caulolatilus microps had higher δ¹⁵N values relative to L. chamaeleonticeps and a pattern of decreasing THg concentrations was also present from south to north across the study range. It is concluded that this trophic difference and spatial pattern in Tilefish THg concentrations emphasizes the habitat and resource partitioning mechanisms described for these sympatric species that permits their coexistence in the continental shelf environment. Importantly, regional variability in THg concentrations accentuate the possible roles of fine-scale biotic and abiotic processes that can act to regulate Hg bioaccumulation among individuals and species.
Mostrar más [+] Menos [-]A novel method to evaluate chemical concentrations in muddy and sandy coastal regions before and after oil exposures Texto completo
2021
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical concentrations along coastlines. In prior work, these concentration changes were used to evaluate the date sediment was impacted by oil (i.e., oil exposure date). The objective of the current study was to build upon prior work by using the oil exposure date to compute oil spill chemical (OSC) concentrations in shoreline sediments before and after exposure. The new method was applied to OSC concentration measures collected during the Deepwater Horizon oil spill with an emphasis on evaluating before and after concentrations in muddy versus sandy regions. The procedure defined a grid that overlaid coastal areas with chemical concentration measurement locations. These grids were then aggregated into clusters to allow the assignment of chemical concentration measurements to a uniform coastal type. Performance of the method was illustrated for ten chemicals individually by cluster, and collectively for all chemicals and all clusters. Results show statistically significant differences between chemical concentrations before and after the calculated oil exposure dates (p < 0.04 for each of the 10 chemicals within the identified clusters). When aggregating all chemical measures collectively across all clusters, chemical concentrations were lower before oil exposure in comparison to after (p < 0.0001). Sandy coastlines exhibited lower chemical concentrations relative to muddy coastlines (p < 0.0001). Overall, the method developed is a useful first step for establishing baseline chemical concentrations and for assessing the impacts of disasters on sediment quality within different coastline types. Results may be also useful for assessing added ecological and human health risks associated with oil spills.
Mostrar más [+] Menos [-]