Refinar búsqueda
Resultados 1-3 de 3
Baseline concentrations of pharmaceuticals in Kuwait's coastal marine environment
2021
Gevao, Bondi | Uddin, Saif | duPont, Sam
This study was carried out to provide baseline information on the concentrations of pharmaceuticals in Kuwait's coastal waters. Samples were collected over four sampling campaigns from various outfalls that occasionally discharged water into the marine environment and analyzed for a range of pharmaceuticals including analgesic/anti-inflammatories, antibiotics, anticoagulant, antidiabetic, antihelmintics, antihypertensives, antiplatelet agent, asthma medication, β-blocking agent, calcium channel blocker, diuretic, histamine H1 and H2 receptor antagonist, lipid regulators/cholesterol-lowering, prostatic hyperplasia, psychiatric drug, sedation and muscle relaxant, synthetic glucocorticoid, tranquilizer and x-ray contrast media. The levels varied between the detection limits of the method and a maximum of 28,183 ng/L for analgesics/anti-inflammatories. The highest pharmaceutical concentrations were in samples collected during the September campaign, possibly linked to the increased prescription of these medications to treat infectious diseases and flu prevalent in Kuwait during the winter months. The spatial variation is concentration is evident with KISR site being most polluted as hospital wastewater is discharged at the site. This study provides the first dataset on the concentrations of pharmaceuticals in the seawater in Kuwait and possibly the wider Arabian Gulf. Kuwait's coastal water pharmaceutical concentrations derived from this study exceed those reported from the Spanish coast, the Hong Kong harbour, the Bohai and the Yellow seas. More studies are needed to evaluate the environmental impact that these residues may have on non-target organisms.
Mostrar más [+] Menos [-]Levels of biogenic amines in cheese: correlation to microbial status, dietary intakes, and their health risk assessment
2020
Ma, Jin-Kui | Raslan, Amal A. | Elbadry, Seham | El-Ghareeb, Waleed Rizk | Mulla, Zohair S. | Bin-Jumah, May | Abdel-Daim, Mohamed M. | Darwish, Wageh Sobhy
Biogenic amines (BAs) are natural toxicants produced during the metabolism of their precursor amino acids or due to the proteolytic activities of some microorganisms. The objective of this study was to estimate the formed BAs in five types of the most commonly consumed and retailed cheese in Egypt. The examined cheese types included Feta, Karish, Mozzarella, Rumy, and Mish. Besides, the total mesophilic (TMC) and total psychrophilic (TPsC) bacterial counts were investigated. Furthermore, the estimated daily intakes (EDI) of BAs via the ingestion of various types of cheese were calculated, and their potential health risks were discussed. The achieved results indicated the formation of histamine (HIS), tyramine (TYR), cadaverine (CAD), putrescine, spermine, and spermidine at different concentrations. Except for Feta cheese, all samples (100%) of other cheese types had HIS concentrations higher than the established maximum permissible limits. Mish cheese contained the highest concentrations of total BAs, particularly, HIS, TYR, and CAD. TBA content showed significant positive correlations with TMC in the examined cheese types. The recorded EDI values of the different BAs in the current study would not have adverse effects. However, excessive consumption of cheese contaminated with BA might have serious health implications such as symptoms of histamine poisoning. Therefore, the adoption of strict hygienic measures during the production, storage, and distribution of cheese is highly recommended to reduce the formation of BAs in cheese.
Mostrar más [+] Menos [-]Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms
2018
Zou, Rusen | Liao, Xiaobin | Zhao, Lei | Yuan, Baoling
Formation of toxic N-nitrosodimethylamine (NDMA) by chloramination of ranitidine, a drug to block histamine, was still an ongoing issue and posed a risk to human health. In this study, the effect of ozonation prior to chloramination on NDMA formation and the transformation pathway were determined. Influencing factors, including ozone dosages, pH, hydroxyl radical scavenger, bromide, and NOM, were studied. The results demonstrated that small ozone dosage (0.5 mg/L) could effectively control NDMA formation from subsequent chloramination (from 40 to 0.8%). The NDMA molar conversion was not only influenced by pH but also by ozone dosages at various pre-ozonation pH (reached the highest value of 5% at pH 8 with 0.5 mg/L O₃ but decreased with the increasing pH with 1 mg/L O₃). The NDMA molar yield by chloramination of ranitidine without pre-ozonation was reduced by the presence of bromide ion due to the decomposition of disinfectant. However, due to the formation of brominated intermediate substances (i.e., dimethylamine (DMA), dimethyl-aminomethyl furfuryl alcohol (DFUR)) with higher NDMA molar yield than their parent substances, more NDMA was formed than that without bromide ion upon ozonation. Natural organic matter (NOM) and hydroxyl radical scavenger (tert-butyl alcohol, tBA) enhanced NDMA generation because of the competition of ozone and more ranitidine left. The NDMA reduction mechanism by pre-ozonation during chloramination of ranitidine may be due to the production of oxidation products with less NDMA yield (such as DMA) than parent compound. Based on the result of Q-TOF and GC-MS/MS analysis, three possible transformation pathways were proposed. Different influences of oxidation conditions and water quality parameters suggest that strategies to reduce NDMA formation should vary with drinking water sources and choose optimal ozone dosage.
Mostrar más [+] Menos [-]