Refinar búsqueda
Resultados 1-10 de 24
Synthesis and performance evaluation of plastic waste aerogel as sustainable and reusable oil absorbent
2021
Pawar, Atul A. | Kim, Ayoung | Kim, Hern
Direct utilization of waste polyethylene terephthalate (PET) from the environment to form highly porous aerogel technology for oil absorption is an attractive approach from the view point of green chemistry. However, the oil absorption reaction is limited by low oil absorption capacity and less stability. For now, silica aerogel are used to solve these problem. Our goal is to substitute to these silica aerogel with PET aerogel technology. Herein, we have prepared an environmental waste PET based aerogel with 1.0:0.5 wt% PET, polyvinyl alcohol (PVA), and glutaraldehyde (GA) 0.2% v/v were dispersed in 10 mL DI water, followed by homogenization (30 min), sonication (10 min), and ageing (2 h) at 70 °C. To escape macroscopic cracking, cooling (8 h) at 4 °C was followed by freezing (6 h), freeze drying at −80 °C, and 5 mTorr for 18 h. The hybrid PET aerogel displays excellent performance towards oil absorption. Notably it showed high absorption capacity towards the different oils about 21–40 times its own weight, depending on the viscosity and density of the oil and solvents within 15–35 s, 25 °C, and 2 × 2 cm aerogel size. In addition, the aerogel shows there is no change in structure after several recycles due to high mechanical strength. Furthermore, because of the PET aerogel's high porosity (99.74%) and low density (0.0311 g/cm³), close bonding between PET-PVA occurs. Therefore, aerogel shows hydrophobic nature, good mechanical strength, high thermal stability, arrangement of the interconnected fibrillar pore network offers a high surface to volume ratio, low surface energy, high surface roughness, and more reusability. All these parameters are responsible for high oil absorption.
Mostrar más [+] Menos [-]The quest for the missing plastics: Large uncertainties in river plastic export into the sea
2022
Roebroek, Caspar T.J. | Laufkötter, Charlotte | González-Fernández, Daniel | van Emmerik, Tim
Plastic pollution in the natural environment is causing increasing concern at both the local and global scale. Understanding the dispersion of plastic through the environment is of key importance for the effective implementation of preventive measures and cleanup strategies. Over the past few years, various models have been developed to estimate the transport of plastics in rivers, using limited plastic observations in river systems. However, there is a large discrepancy between the amount of plastic being modelled to leave the river systems, and the amount of plastic that has been found in the seas and oceans. Here, we investigate one of the possible causes of this mismatch by performing an extensive uncertainty analysis of the riverine plastic export estimates. We examine the uncertainty from the homogenisation of observations, model parameter uncertainty, and underlying assumptions in models. To this end, we use the to-date most complete time-series of macroplastic observations (macroplastics have been found to contain most of the plastic mass transported by rivers), coming from three European rivers. The results show that model structure and parameter uncertainty causes up to four orders of magnitude, while the homogenisation of plastic observations introduces an additional three orders of magnitude uncertainty in the estimates. Additionally, most global models assume that variations in the plastic flux are primarily driven by river discharge. However, we show that correlations between river discharge (and other environmental drivers) and the plastic flux are never above 0.5, and strongly vary between catchments. Overall, we conclude that the yearly plastic load in rivers remains poorly constrained.
Mostrar más [+] Menos [-]Effects of inhomogeneous ground-level pollutant sources under different wind directions
2021
Wang, Huanhuan | Ngan, Keith
Effects of source inhomogeneity on pollutant dispersion from a cubic building array are investigated as a function of the external wind direction. Using building-resolving large-eddy simulation, it is found that the results depend strongly on the source location and source uniformity inside a near-field region defined by a radius of homogenisation (RAD) based on the spatial autocorrelation of the pollutant concentration. The sensitivity of the RAD to the source location changes abruptly around 30° and is greatly reduced for wind angles between 30 and 45°, in agreement with velocity statistics and the mean horizontal streamlines. The optimal source allocation, which is a proxy for emissions from time-dependent traffic, also changes around 30°. This work clarifies the relationship between inhomogeneous velocity and pollutant statistics and may be applied to the formulation of traffic control policy.
Mostrar más [+] Menos [-]Invertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditions
2019
Mor, Jordi-René | Doledec, S. (Sylvain) | Acuña, V. (Vicenç) | Sabater, Sergi | Muñoz, Isabel
Urban wastewater effluents bring large amounts of nutrients, organic matter and organic microcontaminants into freshwater ecosystems. The effects of this complex mixture of pollutants on freshwater invertebrates have been studied mainly in temperate rivers and streams with high dilution capacities. In contrast, Mediterranean streams and rivers have lower dilution capacities especially during the seasonal drought, and are therefore exposed to high concentrations of pollutants. Here, we assess the effects of urban wastewater pollution on invertebrate communities from Mediterranean streams under different hydrological conditions. Specifically, we assessed the invertebrates taxonomic composition and functional biological traits in 12 streams, differing in stream and substrate size (sand or cobbles), under low (2 surveys) and baseflow (1 survey) conditions. In each stream, we selected reaches both upstream and downstream of the wastewater discharge point. Our results indicate that urban wastewater pollution favours the most tolerant invertebrate taxa and homogenises functional trait composition over time. Changes in functional traits were more evident during the seasonal drought, when the low flow conditions at the upstream and downstream sites were more severe and, pollutant concentrations downstream were at their highest. However, the effects of urban wastewater pollution were not uniform in the downstream sites; as local invertebrate communities differed in according to the river substrate and stream size (i.e., width and discharge). Overall, urban pollution caused by wastewater enhanced both, taxonomic and functional differences between the invertebrate communities. Such an absence of homogenisation among wastewater pollution impacted sites was probably related to the relevant role of stream substrate-size as well flow conditions in the rivers receiving the impact. These are attributes that need to be considered when setting the pollutant discharge limits in rivers and streams receiving effluents.
Mostrar más [+] Menos [-]Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico
2019
Zamora-Barrios, Cesar Alejandro | Nandini, S. | Sarma, S.S.S.
Cyanotoxins from toxic blooms in lakes or eutrophic reservoirs are harmful to several organisms including zooplankton, which often act as vectors of these secondary metabolites, because they consume cyanobacteria, bioaccumulate the cyanotoxins and pass them on along the food chain. Microcystins are among the most commonly found cyanotoxins and often cause zooplankton mortality. Although cyanobacterial blooms are common and persistent in Mexican water bodies, information on the bioaccumulation of cyanotoxins is scarce. In this study we present data on the bioaccumulation of cyanotoxins from Planktothrix agardhii, Microcystis sp., Cylindrospermopsis raciborskii and Dolichospermum planctonicum blooms in the seston (suspended particulate matter more than 1.2 μm) by zooplankton and fish (tilapia (Oreochromis niloticus) and mesa silverside (Chirostoma jordani) samples from Lake Zumpango (Mexico City). The cyanotoxins were extracted from the seston, zooplankton and fish tissue by disintegration using mechanical homogenization and 75% methanol. After extraction, microcystins were measured using an ELISA kit (Envirologix). Concentration of microcystins expressed as equivalents, reached a maximum value of 117 μg g−1 on sestonic samples; in zooplankton they were in the range of 0.0070–0.29 μg g−1. The dominant zooplankton taxa included Acanthocyclops americanus copepodites, Daphnia laevis and Bosmina longirostris. Our results indicate twice the permissible limits of microcystins (0.04 μg kg−1 d−1) for consumption of cyanobacterial products in whole fish tissue of Chirostoma jordani. The data have been discussed with emphasis on the importance of regular monitoring of water bodies in Mexico to test the ecotoxicological impacts of cyanobacterial blooms and the risk that consumption of products with microcystins could promote.
Mostrar más [+] Menos [-]Novel urban ecosystems, biodiversity, and conservation
2011
Kowarik, Ingo
With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation.
Mostrar más [+] Menos [-]Homogenization of diatom assemblages is driven by eutrophication in tropical reservoirs
2021
Zorzal-Almeida, Stéfano | Bartozek, Elaine C Rodrigues | Bicudo, Denise C.
Eutrophication is one of the most widespread causes of biotic homogenization in freshwater ecosystems. Biotic homogenization can be characterized as reductions in local diversity (alpha) and occupation of available niches by more generalist species. Beta diversity is expected to decrease in more homogeneous communities, however, there is no consensus on how it responds to eutrophication. We used a space-for-time approach to analyze the process of biotic homogenization on diatom assemblages in response to eutrophication in tropical reservoirs ranging from oligotrophic to hypereutrophic conditions. Diatom assemblages were analyzed in phytoplankton and surface sediment from 12 reservoirs with different trophic levels. We calculated total beta diversity and turnover and nestedness components and used regressions to analyze their relationships with productivity differences (without distance effects). Total beta diversity had a positive influence of the trophic gradient, whereas turnover was not related to eutrophication. However, we found that eutrophication and lower species richness (alpha diversity) led to increasing rates of the nestedness component. We also observed that the homogenization process was not characterized by invasion of new species, but, on the contrary, by filtering nutrient-rich tolerant species also present in oligo-mesotrophic reservoirs and able to occupy available niches in the eutrophic reservoirs. These findings (increase in nestedness, decrease in alpha diversity, and development of tolerant species) suggest that biotic homogenization is leading to a simplification of diatom assemblages in tropical reservoirs, making assemblages from eutrophic and hypereutrophic reservoirs a subset of assemblages from oligotrophic and mesotrophic ones.
Mostrar más [+] Menos [-]Insights about sources, distribution, and degradation of sewage and biogenic molecular markers in surficial sediments and suspended particulate matter from a human-impacted subtropical estuary
2018
Cabral, Ana Caroline | Martins, César C.
The molecular markers sterols and linear alkylbenzenes (LABs) were analyzed in the surficial sediments and suspended particulate matter (SPM) of a subtropical estuary in South Atlantic (Paranaguá Estuarine System). The purpose of this study was identify the spatial distribution of sewage and the input of biogenic organic matter (OM) and to provide comparative insights about their behavior, compositions, and sources. The concentration of coprostanol ranged from < DL (detection limit) to 2.67 μg g−1 in SPM and from < DL to 0.94 μg g−1 in sediments. Total LABs ranged from 43.8 to 480.0 ng g−1 in SPM and from < DL to 21.0 ng g−1 in sediments. LABs homologs composition varied between the two matrices. The local hydrodynamic pattern may promote water column homogenization, dispersion, and dilution of sewage particles, and preferential sedimentation in fluvial and mixture zones. Results suggest that SPM is a good matrix for larger spatial and short time scale evaluation while sediments may help to define hot spot areas of input and final deposition of sewage particles. Marine sterols predominated in SPM while no dominance patterns of marine/terrestrial sterols occurred in surficial sediments. The higher degradation rates of sterols and LABs in the water column must be the main factor for the sharp drop in concentration towards the sediment and the variation of the preferential composition of these markers between compartments.
Mostrar más [+] Menos [-]A facile and cost-effective method for removal of indoor airborne psychrotrophic bacterial and fungal flora based on silver and zinc oxide nanoparticles decorated on fibrous air filter
2017
Pokhum, Chonlada | Intasanta, Varol | Yaipimai, Wittaya | Subjalearndee, Nakarin | Srisitthiratkul, Chutima | Pongsorrarith, Voraluck | Phanomkate, Nipon | Chawengkijwanich, Chamorn
In tropical countries, food and agricultural crops need to be kept cool to reduce spoilage and quality losses. Airborne psychrotrophic bacteria and fungi can cause adverse effects on food quality and consumers' health safety. The present study aimed to present a facile and cost-effective approach to remove airborne microbes from indoor air by employing silver (Ag) and zinc oxide (ZnO) to decorate fibrous air filters. A water-based anti-germ solution containing Ag/ZnO nanoparticles was first prepared using high-speed homogenization. Second, a commercially available washable non-woven air filter (thickness 50 mm) was coated by aerosol generated from the mixture using spray coating process. This facile method successfully led to homogeneous coating of active nanomaterials on the filter's surface as unveiled by scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). On laboratory scale, the Ag/ZnO air filter was shown to exhibit antibacterial effectiveness against Staphylococcus aureus and Escherichia coli under contact mode following an antibacterial standard method (AATCC 147-2011). Finally, the Ag/ZnO filter was assembled into a commercial air filtration system (670 × 820 × 1420 mm) containing two UVA light lamps (365 nm). The Ag/ZnO air-filtration unit was placed in a 45-m3 cold storage room (4–5 °C) for evaluation of airborne psychrotrophic microbial reduction efficiency. The developed Ag/ZnO air filter reduced the airborne psychrotrophic germs concentrations by ∼50% and its efficiency increased to ∼70% when combined with UVA illumination. Based on these results, a simple and low-cost ZnO/Ag air filter was successfully introduced as an effective strategy for removal of psychrotrophic microbes from indoor air.
Mostrar más [+] Menos [-]Multifractal analysis of ground–level ozone concentrations at urban, suburban and rural background monitoring sites in Southwestern Iberian Peninsula
2013
Pavon-Dominguez, Pablo | Jimenez-Hornero, Francisco J. | Gutierrez de Rave, Eduardo
This paper seeks to enhance understanding of the data distribution of ground–level ozone time series by analysing their multifractal spectra. Emphasis is placed on the suitability of the box–counting and moments methods for characterizing scaling properties of ozone concentration, enabling us to describe similarities and differences inferred from the multifractal spectra by analysing various types of monitoring stations (urban, suburban and rural monitoring sites) under identical atmospheric conditions. It is herein demonstrated that that multifractal features are to a considerable extent similar for each type of monitoring station under warm atmospheric conditions and high solar radiation, owing to the fact that these weather characteristics homogenize the scaling behaviour of ozone. On the contrary, location and chemical precursors play a more prominent role under low temperatures and solar radiation, highlighting differences among multifractal features of ozone concentrations in the monitoring sites. At rural stations, the absence of anthropogenic emissions promotes less variability in ozone data and homogenization of multifractal behaviour throughout the year. Furthermore, a data shuffling procedure was performed in order to analyse changes occurring in multifractal spectra as time series are subjected to varying degrees of data position disturbance. Results indicate that multifractal analysis is a useful tool for describing the temporal scaling behaviour of ozone time series at different monitoring sites which refines results that have been traditionally provided by statistical analyses on ozone pollution.
Mostrar más [+] Menos [-]