Refinar búsqueda
Resultados 1-10 de 59
Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees
2022
Scivicco, Marcello | Nolasco, Agata | Esposito, Luigi | Ariano, Andrea | Squillante, Jonathan | Esposito, Francesco | Cirillo Sirri, Teresa | Severino, Lorella
The Covid-19 outbreak had a critical impact on a massive amount of human activities as well as the global health system. On the other hand, the lockdown and related suspension of working activities reduced pollution emissions. The use of biomonitoring is an efficient and quite recent tool to assess environmental pollution through the analysis of a proper bioindicator, such as bees. This study set out to ascertain the impact of the Covid-19 pandemic lockdown on the environmental occurrence of eleven heavy metals in the Campania region (Italy) by analyzing bees and bee products. A further aim of this study was the assessment of the Honeybee Contamination Index (HCI) in three different areas of the Campania region and its comparison with other Italian areas to depict the current environmental pollutants levels of heavy metals. The results showed that the levels of heavy metals bioaccumulated by bees during the pandemic lockdown (T1) were statistically lower than the sampling times after Covid-19 restrictions and the resumption of some or all activities (T2 and T3). A comparable trend was observed in wax and pollen. However, bee, pollen, and wax showed higher levels of Cd and Hg in T1 than T2 and T3. The analysis of the HCI showed a low contamination level of the sampling sites for Cd and Pb, and an intermediate-high level as regards Ni and Cr. The biomonitoring study highlighted a decrease of heavy metals in the environmental compartments due to the intense pandemic restrictions. Therefore, Apis mellifera and other bee products remain a reliable and alternative tool for environmental pollution assessment.
Mostrar más [+] Menos [-]Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure
2018
Calatayud-Vernich, Pau | Calatayud, Fernando | Simó, Enrique | Picó, Yolanda
In order to study the distribution of pesticide residues in beekeeping matrices, samples of live in-hive worker honey bees (Apis mellifera), fresh stored pollen and beeswax were collected during 2016–2017 from 45 apiaries located in different landscape contexts in Spain. A total of 133 samples were screened for 63 pesticides or their degradation products to estimate the pesticide exposure to honey bee health through the calculation of the hazard quotient (HQ). The influence of the surrounding environment on the content of pesticides in pollen was assessed by comparing the concentrations of pesticide residues found in apiaries from intensive farming landscapes to those found in apiaries located in mountainous, grassland and urban contexts. Beeswax revealed high levels of miticides used in beekeeping such as coumaphos, chlorfenvinphos, fluvalinate and acrinathrin, which were detected in more than 75% of samples. Pollen was predominantly contaminated by miticides but also by insecticides used in agriculture such as chlorpyrifos and acetamiprid, which showed concentrations significantly higher in apiaries located in intensive farming contexts. Pesticides residues were less frequent and at lower concentrations in live honey bees. Beeswax showed the highest average hazard scores (HQ > 5000) to honey bees. Pollen samples contained the largest number of pesticide residues and relevant hazard (HQ > 50) to bees. Acrinathrin was the most important contributor to the hazard quotient scores in wax and pollen samples. The contributions of the pesticides dimethoate and chlorpyrifos to HQ were considered relevant in samples.
Mostrar más [+] Menos [-]Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, André | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, L. P. (Luc P.)
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/μL, 0.001 ng/μL and 1.44 ng/μL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages of the honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Mostrar más [+] Menos [-]Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effects patterns at concentrations that mimic environmental contamination
2017
Christen, Verena | Fent, Karl
Pesticides are implicated in the decline of honey bee populations. Many insecticides are neurotoxic acting by different modes of actions. Although a link between insecticide exposure and changed behaviour has been made, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic concentrations of two organophosphates, chlorpyrifos, malathion, the pyrethroid cypermethrin, and the ryanodine receptor activator, chlorantraniliprole. We assessed transcriptional alterations of selected genes at three exposure times (24 h, 48 h, 72 h) in caged honey bees exposed to different concentrations of these compounds. Our targeted gene expression concept focused of several transcripts, including nicotinic acetylcholine receptor α 1 and α 2 (nAChRα1, nAChRα2) subunits, the multifunctional gene vitellogenin, immune system related genes of three immune system pathways, genes belonging to the detoxification system and ER stress genes. Our data indicate a dynamic pattern of expressional changes at different exposure times. All four insecticides induced strong alterations in the expression of immune system related genes suggesting negative implications for honey bee health, as well as cytochrome P450 enzyme transcripts suggesting an interference with metabolism. Exposure to neurotoxic chlorpyrifos, malathion and cypermethrin resulted in up-regulation of nAChRα1 and nAChRα2. Moreover, alterations in the expression of vitellogenin occurred, which suggests implications on foraging activity. Chlorantraniliprole induced ER stress which may be related to toxicity. The comparison of all transcriptional changes indicated that the expression pattern is rather compound-specific and related to its mode of action, but clusters of common transcriptional changes between different compounds occurred. As transcriptional alterations occurred at environmental concentrations our data provide a molecular basis for observed adverse effects of these insecticides to bees.
Mostrar más [+] Menos [-]Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera)
2016
Polykretis, P. | Delfino, G. | Petrocelli, I. | Cervo, R. | Tanteri, G. | Montori, G. | Perito, B. | Branca, J.J.V. | Morucci, G. | Gulisano, M.
In the last decades a dramatic loss of Apis mellifera hives has been reported in both Europe and USA. Research in this field is oriented towards identifying a synergy of contributing factors, i.e. pathogens, pesticides, habitat loss and pollution to the weakening of the hive. Cadmium (Cd) is a hazardous anthropogenic pollutant whose effects are proving to be increasingly lethal. Among the multiple damages related to Cd contamination, some studies report that it causes immunosuppression in various animal species. The aim of this paper is to determine whether contamination by Cd, may have a similar effect on the honey bees’ immunocompetence. Our results, obtained by immune challenge experiments and confirmed by structural and ultrastructural observations show that such metal causes a reduction in immunocompetence in 3 days Cd exposed bees. As further evidence of honey bee response to Cd treatment, Energy Dispersive X-ray Spectroscopy (X-EDS) has revealed the presence of zinc (Zn) in peculiar electron-dense granules in fat body cells. Zn is a characteristic component of metallothioneins (MTs), which are usually synthesized as anti-oxidant and scavenger tools against Cd contamination. Our findings suggest that honey bee colonies may have a weakened immune system in Cd polluted areas, resulting in a decreased ability in dealing with pathogens.
Mostrar más [+] Menos [-]Neonicotinoids residues in the honey circulating in Chinese market and health risk on honey bees and human
2022
Han, Minghui | Wang, Yuanping | Yang, Zichen | Wang, Yi | Huang, Min | Luo, Baozhang | Wang, Hexing | Chen, Yue | Jiang, Qingwu
China is the largest beekeeping and honey consumption country globally. Neonicotinoids in honey can pose adverse effects on honey bees and human, but data on neonicotinoids residues in honey and its health risk remain limited in China. A total of 94 honey samples were selected from Chinese market based on production region and sale volume in 2020. Eight neonicotinoids and four metabolites were determined by liquid chromatography coupled to mass spectrometry. Health risk of neonicotinoids in honey on honey bees and human was assessed by hazard quotient (HQ) and hazard index (HI). Neonicotinoids and their metabolites were overall detected in 97.9% of honey samples. Acetamiprid, thiamethoxam, and imidacloprid were top three dominant neonicotinoids in honey with the detection frequencies of 92.6%, 90.4%, and 73.4%, respectively. For honey bees, 78.7% of honey samples had a HI larger than one based on the safety threshold value of sublethal effects. Top three neonicotinoids with the highest percent proportion of HQ larger than one for honey bees were acetamiprid (43.6%), imidacloprid (31.9%), and thiamethoxam (24.5%) and their maximum HQs were 420, 210, and 41, respectively. Based on oral median lethal doses for honey bees, both HQ and HI were lower than one in all honey samples. For human, both HQ and HI were lower than one based on acceptable daily intakes in all honey samples. Neonicotinoids concentrations and detection frequencies in honey samples and its health risk varied with production region, commercial value of nectariferous plants, number of nectariferous plants, and sale price. The results suggested extensive residues of neonicotinoids in honey in Chinese market with a variation by the characteristics of honey. The residues were likely to affect the health of honey bees, but showed no detectable effect on human health.
Mostrar más [+] Menos [-]Antibiotics-induced changes in intestinal bacteria result in the sensitivity of honey bee to virus
2022
Deng, Yanchun | Yang, Sa | Zhao, Hongxia | Luo, Ji | Yang, Wenchao | Hou, Chunsheng
Antibiotics are omnipresent in the environment due to their widespread use, and they have wide-ranging negative impacts on organisms. Virus resistance differs substantially between domesticated Apis mellifera and wild Apis cerana, although both are commonly raised in China. Here, we investigated whether antibiotics can increase the sensitivity of honey bees to viral infection using the Israeli acute paralysis virus (IAPV) and tetracycline as representative virus and antibiotic. Although IAPV multiplied to lower levels in A. cerana than A. mellifera, resulting in decreased mortality (P < 0.01), there was no significant difference in immune responses to viral infection between the two species. Adult worker bees (A. cerana and A. mellifera) were treated with or without tetracycline to demonstrate the prominent role of gut microbiota against viral infection, and found Lactobacillus played a vital antiviral role in A. cerana. In A. cerana but not A. mellifera, tetracycline treatment reduced clearly bee survival and increased susceptibility to IAPV infection (P < 0.01). Our findings revealed that long-term antibiotic treatment in A. mellifera had altered the native gut microbiome and promoted the sensitivity to viral infection. We highlight the effects of antibiotics exposure on resistance to microbial and viral infection.
Mostrar más [+] Menos [-]Environmental monitoring study of pesticide contamination in Denmark through honey bee colonies using APIStrip-based sampling
2021
Murcia-Morales, María | Díaz-Galiano, Francisco José | Vejsnæs, Flemming | Kilpinen, Ole | Van der Steen, Jozef J.M. | Fernández-Alba, Amadeo R.
Due to their extensive use in both agricultural and non-agricultural applications, pesticides are a major source of environmental contamination. Honey bee colonies are proven sentinels of these and other contaminants, as they come into contact with them during their foraging activities. However, active sampling strategies involve a negative impact on these organisms and, in most cases, the need of analyzing multiple heterogeneous matrices. Conversely, the APIStrip-based passive sampling is innocuous for the bees and allows for long-term monitorings using the same colony. The versatility of the sorbent Tenax, included in the APIStrip composition, ensures that comprehensive information regarding the contaminants inside the beehive will be obtained in one single matrix. In the present study, 180 APIStrips were placed in nine apiaries distributed in Denmark throughout a six-month sampling period (10 subsequent samplings, April to September 2020). Seventy-five pesticide residues were detected (out of a 428-pesticide scope), boscalid and azoxystrobin being the most frequently detected compounds. There were significant variations in the findings of the sampling sites in terms of number of detections, pesticide diversity and average concentration. A relative indicator of the potential risk of pesticide exposure for the honey bees was calculated for each sampling site. The evolution of pesticide detections over the sampling periods, as well as the individual tendencies of selected pesticides, is herein described. The findings of this large-scale monitoring were compared to the ones obtained in a previous Danish, APIStrip-based pilot monitoring program in 2019. Samples of honey and wax were also analyzed and compared to the APIStrip findings.
Mostrar más [+] Menos [-]Use of nest bundles to monitor agrochemical exposure and effects among cavity nesting pollinators
2021
Peterson, Eric M. | Thompson, Kelsey N. | Shaw, Katherine R. | Tomlinson, Caleb | Longing, Scott D. | Smith, Philip N.
Cavity nesting bees are proficient and important pollinators that can augment or replace honey bee pollination services for some crops. Relatively little is known about specific pesticide concentrations present in cavity nesting insect reed matrices and associated potential risks to cavity nesting bees. Nesting substrates (Phragmites australis reeds in bundles) were deployed in an agriculturally intensive landscape to evaluate colonization and agrochemical exposure among cavity nesting pollinators over two consecutive field seasons. Composition of insect species colonizing reeds within nest bundles varied considerably; those placed near beef cattle feed yards were dominated by wasps (93% of the total number of individuals occupying reed nest bundles), whereas nest bundles deployed in cropland-dominated landscapes were colonized primarily by leaf cutter bees (71%). All nesting/brood matrices in reeds (mud, leaves, brood, pollen) contained agrochemicals. Mud used in brood chamber construction at feed yard sites contained 21 of 23 agrochemicals included in analysis and >70% of leaf substrate stored in reeds contained at least one agrochemical. Moxidectin was most frequently detected across all reed matrices from feed yard sites, and moxidectin concentrations in nonviable larvae were more than four times higher than those quantified in viable larvae. Agrochemical concentrations in leaf material and pollen were also quantified at levels that may have induced toxic effects among developing larvae. To our knowledge, this is the first study to characterize agrochemical concentrations in multiple reed matrices provisioned by cavity-nesting insects. Use of nest bundles revealed that cavity nesting pollinators in agriculturally intensive regions are exposed to agrochemicals during all life stages, at relatively high frequencies, and at potentially lethal concentrations. These results demonstrate the utility of nest bundles for characterizing risks to cavity nesting insects inhabiting agriculturally intensive regions.
Mostrar más [+] Menos [-]Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (Apis mellifera)
2021
Fisher, Adrian | DeGrandi-Hoffman, Gloria | Smith, Brian H. | Johnson, Meredith | Kaftanoglu, Osman | Cogley, Teddy | Fewell, Jennifer H. | Harrison, Jon F.
Honey bees (Apis mellifera) and other pollinator populations are declining worldwide, and the reasons remain controversial. Based on laboratory testing, fungicides have traditionally been considered bee-safe. However, there have been no experimental tests of the effects of fungicides on colony health under field conditions, and limited correlational data suggests there may be negative impacts on bees at levels experienced in the field. We tested the effects of one of the most commonly used fungicides on colony health by feeding honey bee colonies pollen containing Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) at four levels that bracketed concentrations we measured for pollen collected by bees in almond orchards. We also developed a method for calculating per-bee and per-larva dose. Pristine® consumption significantly and dose-dependently reduced worker lifespan and colony population size, with negative health effects observed even at the lowest doses. The lowest concentration we tested caused a 15% reduction in the worker population at an estimated dosage that was three orders of magnitude below the estimated LD₁₅ values for previous acute laboratory studies. The enhanced toxicity under field conditions is at least partially due to activation of colonial nutritional responses missed by lab tests. Pristine® causes colonies to respond to perceived protein malnutrition by increasing colony pollen collection. Additionally, Pristine induces much earlier transitioning to foraging in individual workers, which could be the cause of shortened lifespans. These findings demonstrate that Pristine® can negatively impact honey bee individual and colony health at concentrations relevant to what they experience from pollination behavior under current agricultural conditions.
Mostrar más [+] Menos [-]