Refinar búsqueda
Resultados 1-10 de 59
Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees Texto completo
2022
Scivicco, Marcello | Nolasco, Agata | Esposito, Luigi | Ariano, Andrea | Squillante, Jonathan | Esposito, Francesco | Cirillo Sirri, Teresa | Severino, Lorella
The Covid-19 outbreak had a critical impact on a massive amount of human activities as well as the global health system. On the other hand, the lockdown and related suspension of working activities reduced pollution emissions. The use of biomonitoring is an efficient and quite recent tool to assess environmental pollution through the analysis of a proper bioindicator, such as bees. This study set out to ascertain the impact of the Covid-19 pandemic lockdown on the environmental occurrence of eleven heavy metals in the Campania region (Italy) by analyzing bees and bee products. A further aim of this study was the assessment of the Honeybee Contamination Index (HCI) in three different areas of the Campania region and its comparison with other Italian areas to depict the current environmental pollutants levels of heavy metals. The results showed that the levels of heavy metals bioaccumulated by bees during the pandemic lockdown (T1) were statistically lower than the sampling times after Covid-19 restrictions and the resumption of some or all activities (T2 and T3). A comparable trend was observed in wax and pollen. However, bee, pollen, and wax showed higher levels of Cd and Hg in T1 than T2 and T3. The analysis of the HCI showed a low contamination level of the sampling sites for Cd and Pb, and an intermediate-high level as regards Ni and Cr. The biomonitoring study highlighted a decrease of heavy metals in the environmental compartments due to the intense pandemic restrictions. Therefore, Apis mellifera and other bee products remain a reliable and alternative tool for environmental pollution assessment.
Mostrar más [+] Menos [-]Antibiotics-induced changes in intestinal bacteria result in the sensitivity of honey bee to virus Texto completo
2022
Deng, Yanchun | Yang, Sa | Zhao, Hongxia | Luo, Ji | Yang, Wenchao | Hou, Chunsheng
Antibiotics are omnipresent in the environment due to their widespread use, and they have wide-ranging negative impacts on organisms. Virus resistance differs substantially between domesticated Apis mellifera and wild Apis cerana, although both are commonly raised in China. Here, we investigated whether antibiotics can increase the sensitivity of honey bees to viral infection using the Israeli acute paralysis virus (IAPV) and tetracycline as representative virus and antibiotic. Although IAPV multiplied to lower levels in A. cerana than A. mellifera, resulting in decreased mortality (P < 0.01), there was no significant difference in immune responses to viral infection between the two species. Adult worker bees (A. cerana and A. mellifera) were treated with or without tetracycline to demonstrate the prominent role of gut microbiota against viral infection, and found Lactobacillus played a vital antiviral role in A. cerana. In A. cerana but not A. mellifera, tetracycline treatment reduced clearly bee survival and increased susceptibility to IAPV infection (P < 0.01). Our findings revealed that long-term antibiotic treatment in A. mellifera had altered the native gut microbiome and promoted the sensitivity to viral infection. We highlight the effects of antibiotics exposure on resistance to microbial and viral infection.
Mostrar más [+] Menos [-]Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress Texto completo
2021
Yu, Longtao | Yang, Heyan | Cheng, Fuping | Wu, Zhihao | Huang, Qiang | He, Xujiang | Yan, Weiyu | Zhang, Lizhen | Wu, Xiaobo
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
Mostrar más [+] Menos [-]Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.) Texto completo
2020
Zhu, Lizhen | Qi, Suzhen | Xue, Xiaofeng | Niu, Xinyue | Wu, Liming
Recently, environmental risk and toxicity of neonicotinoid insecticides to honey bees have attracted extensive attention. However, toxicological understanding of neonicotinoid insecticides on gut microbiota is limited. In the present study, honey bees (Apis mellifera L.) were exposed to a series of nitenpyram for 14 days. Results indicated that nitenpyram exposure decreased the survival and food consumption of honey bees. Furthermore, 16S rRNA gene sequencing revealed that nitenpyram caused significant alterations in the relative abundance of several key gut microbiotas, which contribute to metabolic homeostasis and immunity. Using high-throughput RNA-Seq transcriptomic analysis, we identified a total of 526 differentially expressed genes (DEGs) that were significantly altered between nitenpyram-treated and control honey bee gut, including several genes related to metabolic, detoxification and immunity. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed nitenpyram affected several biological processes, of which most were related to metabolism. Collectively, our study demonstrates that the dysbiosis of gut microbiota in honey bee caused by nitenpyram may influence metabolic homeostasis and immunity of bees, and further decrease food consumption and survival of bees.
Mostrar más [+] Menos [-]Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields Texto completo
2019
Tschoeke, Paulo Henrique | Oliveira, Eugênio E. | Dalcin, Mateus S. | Silveira-Tschoeke, Marcela Cristina A.C. | Sarmento, Renato A. | Santos, Gil Rodrigues
The ecological and economic contributions of pollinator bees to agricultural production have been threatened by the inappropriate and excessive use of pesticides. These pesticides are often applied in areas with ecological peculiarities (e.g., the Neotropical savannah-like region termed as Cerrado) that were not considered during the product development. Here, we conducted field experiments with melon (i.e., Cucumis melo L.) plants cultivated under Brazilian Cerrado conditions and evaluated the impacts of botanical (i.e., neem-based insecticide) and synthetic (i.e., the pyrethroid insecticide deltamethrin and the fungicides thiophanate-methyl and chlorothalonil) pesticides on the flower visitation rates of naturally occurring pollinator bees. Our results revealed that both honey bees (i.e., Apis mellifera L.) and non-Apis bees visited melon flowers and the intensity of bee visitation was moderately correlated with yield parameters (e.g., number of marketable fruits and fruit yield). Pesticide treatments differentially affected bee species. For instance, Plebeia sp. bees were not affected by any pesticide treatment, whereas both A. mellifera and Halictus sp. bees showed reduced visitation intensity after the application of deltamethrin or neem-based insecticides. Fungicide treatment alone did not influence the bee's visitation intensity. Deltamethrin-treated melon fields produced significantly lighter marketable fruits, and the melon yield was significantly lower in melon fields treated with the neem-based insecticide. Thus, our findings with such pollinator bees reinforce the idea that field applications of botanical pesticides may represent as risky as the applications of synthetic compounds, indicating that these alternative products should be submitted to risk assessments comparable to those required for synthetic products.
Mostrar más [+] Menos [-]Tracing natural and industrial contamination and lead isotopic compositions in an Australian native bee species Texto completo
2018
Zhou, Xiaoteng | Taylor, Mark Patrick | Davies, Peter J.
This study investigates trace element concentrations (arsenic (As), manganese (Mn), lead (Pb) and zinc (Zn)) and Pb isotopic compositions in an Australian native bee species, Tetragonula carbonaria, and its products of honey and wax. Co-located soil and dust samples were simultaneously analysed with the objective of determining if the bees or their products had potential application as a proxy for monitoring environmental contamination. The most significant relationships were found between Pb concentrations in honey (r = 0.814, p = 0.014) and wax (r = 0.883, p = 0.004) and those in co-located dust samples. In addition, Zn concentrations in honey and soil were significantly associated (r = 0.709, p = 0.049). Lead isotopic compositions of native bee products collected from background sites adjacent to Sydney national parks (²⁰⁶Pb/²⁰⁷Pb = 1.144, ²⁰⁸Pb/²⁰⁷Pb = 2.437) corresponded to local geogenic rock and soil values (²⁰⁶Pb/²⁰⁷Pb = 1.123–1.176, ²⁰⁸Pb/²⁰⁷Pb = 2.413–2.500). By contrast, inner Sydney metropolitan samples, including native bees and wax (²⁰⁶Pb/²⁰⁷Pb = 1.072–1.121, ²⁰⁸Pb/²⁰⁷Pb = 2.348–2.409), co-located soil and dust (²⁰⁶Pb/²⁰⁷Pb = 1.090–1.122, ²⁰⁸Pb/²⁰⁷Pb = 2.368–2.403), corresponded most closely to aerosols collected during the period of leaded petrol use (²⁰⁶Pb/²⁰⁷Pb = 1.067–1.148, ²⁰⁸Pb/²⁰⁷Pb = 2.341–2.410). A large range of Pb isotopic compositions in beehive samples suggests that other legacy sources, such as Pb-based paints and industrials, may have also contributed to Pb contamination in beehive samples. Native bee data were compared to corresponding samples from the more common European honey bee (Apis mellifera). Although Pb isotopic compositions were similar in both species, significant differences in trace element concentrations were evident across the trace element suite, the bees and their products. The statistical association between T. carbonaria and co-located environmental contaminant concentrations were stronger than those in European honey bees, which may be attributable to its smaller foraging distance (0.3–0.7 km versus 5–9 km, respectively). This implies that T. carbonaria may be more suitable for assessing small spatial scale variations of trace element concentrations than European honey bees.
Mostrar más [+] Menos [-]Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera) Texto completo
2017
Christen, Verena | Bachofer, Sara | Fent, Karl
Among the many factors responsible for the decline of bee populations are plant protection products such as neonicotinoids. In general, bees are exposed to not only one but mixtures of such chemicals. At environmental realistic concentrations neonicotinoids may display negative effects on the immune system, foraging activity, learning and memory formation of bees. Neonicotinoids induce alterations of gene transcripts such as nicotinic acetylcholine receptor (nAChR) subunits, vitellogenin, genes of the immune system and genes linked to memory formation. While previous studies focused on individual compounds, the effect of neonicotinoid mixtures in bees is poorly known. Here we investigated the effects of neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam as single compounds, and binary mixtures thereof in honeybees. We determined transcriptional changes of nAChR subunits and vitellogenin in the brain of experimentally exposed honeybees after exposure up to 72 h. Exposure concentrations were selected on the basis of lowest effect concentrations of the single compounds. Transcriptional induction of nAChRs and vitellogenin was strongest for thiamethoxam, and weakest for acetamiprid. To a large extent, binary mixtures did not show additive transcriptional inductions but they were less than additive. Our data suggest that the joint transcriptional activity of neonicotinoids cannot be explained by concentration addition. The in vivo effects are not only governed by agonistic interaction with nAChRs alone, but are more complex as a result of interactions with other pathways as well. Further studies are needed to investigate the physiological joint effects of mixtures of neonicotinoids and other plant protection products on bees to better understand their joint effects.
Mostrar más [+] Menos [-]Neonicotinoids residues in the honey circulating in Chinese market and health risk on honey bees and human Texto completo
2022
Han, Minghui | Wang, Yuanping | Yang, Zichen | Wang, Yi | Huang, Min | Luo, Baozhang | Wang, Hexing | Chen, Yue | Jiang, Qingwu
China is the largest beekeeping and honey consumption country globally. Neonicotinoids in honey can pose adverse effects on honey bees and human, but data on neonicotinoids residues in honey and its health risk remain limited in China. A total of 94 honey samples were selected from Chinese market based on production region and sale volume in 2020. Eight neonicotinoids and four metabolites were determined by liquid chromatography coupled to mass spectrometry. Health risk of neonicotinoids in honey on honey bees and human was assessed by hazard quotient (HQ) and hazard index (HI). Neonicotinoids and their metabolites were overall detected in 97.9% of honey samples. Acetamiprid, thiamethoxam, and imidacloprid were top three dominant neonicotinoids in honey with the detection frequencies of 92.6%, 90.4%, and 73.4%, respectively. For honey bees, 78.7% of honey samples had a HI larger than one based on the safety threshold value of sublethal effects. Top three neonicotinoids with the highest percent proportion of HQ larger than one for honey bees were acetamiprid (43.6%), imidacloprid (31.9%), and thiamethoxam (24.5%) and their maximum HQs were 420, 210, and 41, respectively. Based on oral median lethal doses for honey bees, both HQ and HI were lower than one in all honey samples. For human, both HQ and HI were lower than one based on acceptable daily intakes in all honey samples. Neonicotinoids concentrations and detection frequencies in honey samples and its health risk varied with production region, commercial value of nectariferous plants, number of nectariferous plants, and sale price. The results suggested extensive residues of neonicotinoids in honey in Chinese market with a variation by the characteristics of honey. The residues were likely to affect the health of honey bees, but showed no detectable effect on human health.
Mostrar más [+] Menos [-]Environmental monitoring study of pesticide contamination in Denmark through honey bee colonies using APIStrip-based sampling Texto completo
2021
Murcia-Morales, María | Díaz-Galiano, Francisco José | Vejsnæs, Flemming | Kilpinen, Ole | Van der Steen, Jozef J.M. | Fernández-Alba, Amadeo R.
Due to their extensive use in both agricultural and non-agricultural applications, pesticides are a major source of environmental contamination. Honey bee colonies are proven sentinels of these and other contaminants, as they come into contact with them during their foraging activities. However, active sampling strategies involve a negative impact on these organisms and, in most cases, the need of analyzing multiple heterogeneous matrices. Conversely, the APIStrip-based passive sampling is innocuous for the bees and allows for long-term monitorings using the same colony. The versatility of the sorbent Tenax, included in the APIStrip composition, ensures that comprehensive information regarding the contaminants inside the beehive will be obtained in one single matrix. In the present study, 180 APIStrips were placed in nine apiaries distributed in Denmark throughout a six-month sampling period (10 subsequent samplings, April to September 2020). Seventy-five pesticide residues were detected (out of a 428-pesticide scope), boscalid and azoxystrobin being the most frequently detected compounds. There were significant variations in the findings of the sampling sites in terms of number of detections, pesticide diversity and average concentration. A relative indicator of the potential risk of pesticide exposure for the honey bees was calculated for each sampling site. The evolution of pesticide detections over the sampling periods, as well as the individual tendencies of selected pesticides, is herein described. The findings of this large-scale monitoring were compared to the ones obtained in a previous Danish, APIStrip-based pilot monitoring program in 2019. Samples of honey and wax were also analyzed and compared to the APIStrip findings.
Mostrar más [+] Menos [-]Use of nest bundles to monitor agrochemical exposure and effects among cavity nesting pollinators Texto completo
2021
Peterson, Eric M. | Thompson, Kelsey N. | Shaw, Katherine R. | Tomlinson, Caleb | Longing, Scott D. | Smith, Philip N.
Cavity nesting bees are proficient and important pollinators that can augment or replace honey bee pollination services for some crops. Relatively little is known about specific pesticide concentrations present in cavity nesting insect reed matrices and associated potential risks to cavity nesting bees. Nesting substrates (Phragmites australis reeds in bundles) were deployed in an agriculturally intensive landscape to evaluate colonization and agrochemical exposure among cavity nesting pollinators over two consecutive field seasons. Composition of insect species colonizing reeds within nest bundles varied considerably; those placed near beef cattle feed yards were dominated by wasps (93% of the total number of individuals occupying reed nest bundles), whereas nest bundles deployed in cropland-dominated landscapes were colonized primarily by leaf cutter bees (71%). All nesting/brood matrices in reeds (mud, leaves, brood, pollen) contained agrochemicals. Mud used in brood chamber construction at feed yard sites contained 21 of 23 agrochemicals included in analysis and >70% of leaf substrate stored in reeds contained at least one agrochemical. Moxidectin was most frequently detected across all reed matrices from feed yard sites, and moxidectin concentrations in nonviable larvae were more than four times higher than those quantified in viable larvae. Agrochemical concentrations in leaf material and pollen were also quantified at levels that may have induced toxic effects among developing larvae. To our knowledge, this is the first study to characterize agrochemical concentrations in multiple reed matrices provisioned by cavity-nesting insects. Use of nest bundles revealed that cavity nesting pollinators in agriculturally intensive regions are exposed to agrochemicals during all life stages, at relatively high frequencies, and at potentially lethal concentrations. These results demonstrate the utility of nest bundles for characterizing risks to cavity nesting insects inhabiting agriculturally intensive regions.
Mostrar más [+] Menos [-]