Refinar búsqueda
Resultados 1-10 de 343
Particle surface area, ultrafine particle number concentration, and cardiovascular hospitalizations
2022
Lin, Shao | Ryan, Ian | Paul, Sanchita | Deng, Xinlei | Zhang, Wangjian | Luo, Gan | Dong, Guang-Hui | Nair, Arshad | Yu, Fangqun
While the health impacts of larger particulate matter, such as PM₁₀ and PM₂.₅, have been studied extensively, research regarding ultrafine particles (UFPs or PM₀.₁) and particle surface area concentration (PSC) is lacking. This case-crossover study assessed the associations between exposure to PSC and UFP number concentration (UFPnc) and hospital admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013–2018. We used a time-stratified case-crossover design to compare the PSC and UFPnc levels between hospitalization days and control days (similar days without admissions) for each CVD case. We utilized NYS hospital discharge data to identify all CVD cases who resided in NYS. UFP simulation data from GEOS-Chem-APM, a state-of-the-art chemical transport model, was used to define PSC and UFPnc. Using a multi-pollutant model and conditional logistic regression, we assessed excess risk (ER)% per inter-quartile change of PSC and UFPnc after controlling for meteorological factors, co-pollutants, and time-varying variables. We found immediate and lasting associations between PSC and overall CVDs (lag0–lag0-6: ERs% (95% CI%) ranges: 0.4 (0.1,0.7) - 0.9 (0.7–1.2), and delayed and prolonged ERs%: 0.1–0.3 (95% CIs: 0.1–0.5) between UFPnc and CVDs (lag0-3–lag0-6). Exposure to larger PSC was associated with immediate ER increases in stroke, hypertension, and ischemic heart diseases (1.1%, 0.7%, 0.8%, respectively, all p < 0.05). The adverse effects of PSC on CVDs were highest among children (5–17 years old), in the fall and winter, and during cold temperatures. In conclusion, we found an immediate, lasting effects of PSC on overall CVDs and a delayed, prolonged impact of UFPnc. PSC was a more sensitive indicator than UFPnc. The PSC effects were higher among certain CVD subtypes, in children, in certain seasons, and during cold days. Further studies are needed to validate our findings and evaluate the long-term effects.
Mostrar más [+] Menos [-]Direct injection green chromatographic method for simultaneous quantification of amoxicillin and amikacin in maternity hospital wastewater (Sagar, India)
2022
Sharma, Girraj | Pahade, Priyanka | Durgbanshi, Abhilasha | Carda-Broch, Samuel | Peris-Vicente, Juan | Bose, Devasish
Amoxicillin (AMO) and amikacin (AMK) are broad-spectrum antibiotics that are most preferably given post-delivery (normal and cesarian) in the maternity hospitals located in Sagar city (Madhya Pradesh), India. Both the antibiotics make their way through sewage/drainage systems into the environment in the form of metabolized and unmetabolized compounds. Growing concern about the contamination of wastewater by antibiotics requires fast, sensitive and eco-friendly techniques. Therefore a simple, rapid and environmental friendly chromatographic method has been developed for simultaneous determination of AMO and AMK in maternity hospital wastewater samples. A micellar liquid chromatographic (MLC) method was developed with a C₁₈ column (250 mm × 4.6 mm), sodium dodecyl sulphate (SDS; 0.15 M), 1-butanol (7%) as a modifier, pH 5 and photo diode detector (PDA) at 270 nm and 256 nm for AMO and AMK respectively. The method was fast with analysis time below 9 min. In the present MLC method, linearities (r > 0.998), limits of quantification in the range of 0.02–0.04 μg/mL, repeatabilities, and intermediate precision below 4.9% were adequate for the quantification of AMO and AMK. The proposed method can be utilized to detect and quantify both the antibiotics in various samples by hospitals, pharmaceutical companies, pollution control board, municipal corporations, etc.
Mostrar más [+] Menos [-]An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city
2021
Ammendolia, Justine | Saturno, Jacquelyn | Brooks, Amy L. | Jacobs, Shoshanah | Jambeck, Jenna R.
The COVID-19 pandemic has resulted in an unprecedented surge of production, consumption, and disposal of personal protective equipment (PPE) including face masks, disposable gloves, and disinfectant wipes, which are often made of single use plastic. Widespread public use of these items has imposed pressure on municipalities to properly collect and dispose of potentially infectious PPE. There has been a lack of structured monitoring efforts to quantify the emerging trend of improperly disposed of PPE debris. In this study, we present a baseline monitoring survey to describe the spatial distribution of PPE debris during the COVID-19 pandemic from the metropolitan city of Toronto, Canada. Our objectives were to: (1) quantify PPE debris types among surveyed areas and; (2) identify PPE debris densities and accumulation of surveyed areas. A total of 1306 PPE debris items were documented, with the majority being disposable gloves (44%), followed by face masks (31%), and disinfecting wipes (25%). Of the face masks, 97% were designed for single use while only 3% were reusable. Of the surveyed locations, the highest daily average densities of PPE debris were recorded in the large and medium-sized grocery store parking lots and the hospital district (0.00475 items/m², 0.00160 items/m², and 0.00133 items/m² respectively). The two surveyed residential areas had the following highest PPE densities (0.00029 items/m² and 0.00027 items/m²), while the recreational trail had the lowest densities (0.00020 items/m²). Assuming a business-as-usual accumulation, an estimated 14,298 PPE items will be leaked as debris in just the surveyed areas annually. To facilitate proper disposal of PPE debris by the public we recommend development of municipal efforts to improve PPE collection methods that are informed by the described PPE waste pathways.
Mostrar más [+] Menos [-]Short- and medium-chain chlorinated paraffin exposure in South Germany: A total diet, meal and market basket study
2021
Krätschmer, Kerstin | Schächtele, Alexander | Vetter, Walter
Short- and medium-chain chlorinated paraffins (SCCPs, MCCPs) are high-production volume industrial chemicals that have been previously reported to occur in food, packaging material and the environment. This study presents an assessment of dietary exposure for consumers in Southern Germany based on three different sampling approaches: (i) a classical market basket study (n = 154), (ii) the analysis of ready-made meals from restaurants (n = 10), and (iii) a total diet approach (n = 21). In 35% of the samples, CPs were below the method limit of quantification. Highest amounts of SCCPs and MCCPs were found especially in extra virgin olive oils (EVOOs) and fish. Homologue patterns indicated the partial removal of CPs during the refining of (other) edible oils. Ready-made meals contained only low amounts of CPs equal to estimations based on market basket samples. Total diet samples from the same hospital were generally comparable with each other regardless of diet, although vegetarian meal plans with high amounts of cheese and other dairy products contained up to an order of magnitude more CPs than other diets. Taking all approaches into account, calculated daily exposures for adults ranged 35–420 ng/kg bw/day for ΣSCCPs and 22–840 ng/kg bw/day for ΣMCCPs, which is between one and two orders of magnitude higher than the current dietary intake of polychlorinated biphenyls (indicator PCBs) in Europe.
Mostrar más [+] Menos [-]Prevalence of multi-resistant plasmids in hospital inhalable particulate matter (PM) and its impact on horizontal gene transfer
2021
Zhou, Zhen-Chao | Shuai, Xin-Yi | Lin, Ze-Jun | Liu, Yang | Zhu, Lin | Chen, Hong
Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM₂.₅ and PM₁₀ significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance.
Mostrar más [+] Menos [-]Effects of acute ambient pollution exposure on preterm prelabor rupture of membranes: A time-series analysis in Shanghai, China
2021
Li, Cheng | Xu, Jing-Jing | He, Yi-Chen | Chen, Lei | Dennis, Cindy-Lee | Huang, He-Feng | Wu, Yan-Ting
While the effects of ambient pollutants on adverse perinatal outcomes have been studied, most studies have focused on preterm birth, stillbirth, and low birthweight. Few studies have examined the effects of ambient pollutants on prelabor rupture of membranes (PROM). This study was designed to explore the acute effects of ambient pollutants on both term PROM (TPROM) and preterm PROM (PPROM). We enrolled pregnant women receiving antenatal care between October 2013 and December 2019 at the International Peace Maternity and Child Health Hospital (IPMCHH). The effects of ambient pollutants (including PM₂.₅, PM₁₀, SO₂, CO, NO₂, and 8-h O₃) on TPROM and PPROM were estimated using generalized additive models (GAMs). Exposure-response relationship curves were also evaluated using GAMs after adjustment for confounding factors. Potential lagged effects were examined using various lag models. The data of 100,200 pregnant women who delivered at IPMCHH were analyzed. The fitted spline curves for PPROM were similar to the temporal trends of PM₂.₅, PM₁₀, SO₂, CO and NO₂ but not O₃, while those for TPROM were different from the temporal trends of all six air pollutants. An increased risk of PPROM was associated with increased concentrations of PM₂.₅, PM₁₀, SO₂ and CO on lag days 2 and 3, while no association was found between PPROM and daily concentration of O₃. After adjustment for confounding factors, there was a shift in the exposure-response curves, indicating associations between PPROM and PM₂.₅, PM₁₀, SO₂, and CO on lag days 2–3. Interaction effects of PM₂.₅, PM₁₀, SO₂, and CO were also found to increase the risk of PPROM. In conclusion, acute exposures to six critical air pollutants were not associated with an increased risk of TPROM; however, PM₂.₅, PM₁₀, SO₂, and CO were found to interact, increasing the risk for PPROM on lag days 2 and 3.
Mostrar más [+] Menos [-]Modelling local nanobiomaterial release and concentration hotspots in the environment
2021
Hauser, Marina | Nowack, Bernd
Nanobiomaterials (NBMs) are a special category of nanomaterials used in medicine. As applications of NBMs are very similar to pharmaceuticals, their environmental release patterns are likely similar as well. Different pharmaceuticals were detected in surface waters all over the world. Consequently, there exists a need to identify possible NBM exposure routes into the environment. As the application of many NBMs is only carried out at specific locations (hospitals), average predicted environmental concentrations (PECs) may not accurately represent their release to the environment. We estimated the local release of poly(lactic-co-glycolic acid) (PLGA), which is investigated for their use in drug delivery, to Swiss surface waters by using population data as well as type, size and location of hospitals as proxies. The total mean consumption of PGLA in Switzerland using an explorative full-market penetration scenario was calculated to be 770 kg/year. 105 hospitals were considered, which were connected to wastewater treatment plants and the receiving water body using graphic information system (GIS) modelling. The water body dataset contained 20,167 river segments and 210 lake polygons. Using the discharge of the river, we were able to calculate the PECs in different river segments. While we calculated high PLGA releases of 2.24 and 2.03 kg/year in large cities such as Geneva or Zurich, the resulting local PECs of 220 and 660 pg/l, respectively, were low due to the high river discharge (330 and 97 m³/s). High PLGA concentrations (up to 7,900 pg/l) on the other hand were calculated around smaller cities with local hospitals but also smaller receiving rivers (between 0.7 and 1.9 m³/s). Therefore, we conclude that population density does not accurately predict local concentration hotspots of NBMs, such as PLGA, that are administered in a hospital context. In addition, even at the locations with the highest predicted PLGA concentrations, the expected risk is low.
Mostrar más [+] Menos [-]Residential green space structures are associated with a lower risk of bipolar disorder: A nationwide population-based study in Taiwan
2021
Chang, Hao-Ting | Wu, Chih-Da | Wang, Jung-Der | Chen, Po-See | Su, Huey-Jen
Although many researchers have identified the potential psychological benefits offered by greenness, the association between green space structures and mental disorders is not well understood. The purpose of this study was to identify associations between green space structures and the incidence of bipolar disorder. To this end, we investigated 1,907,776 individuals collected from Taiwan’s National Health Insurance Research Database. After a follow-up investigation from 2005 to 2016, among those with no history of bipolar disorder, 20,548 individuals were further found to be diagnosed with bipolar disorder. A geographic information system and landscape index were used to quantify three indices of green space structures: mean patch area (area and edge), mean fractal dimension index (shape), and mean proximity index (proximity). Additionally, greenness indices, the normalized difference vegetation index, and the enhanced vegetation index were used to confirm the association between greenness and incidence of bipolar disorder. These five indices were used to represent the individual’s exposure according to the township of the hospital that they most frequently visited with symptoms of the common cold. Spearman’s correlation analysis was performed to select variables by considering their collinearity. Subsequently, the frailty model for each index was used to examine the specific associations between those respective indices and the incidence of bipolar disorder by adjusting for related risk factors, such as socioeconomic status, metabolic syndrome, and air pollution. A negative association was identified between the mean patch area and the mean proximity index, and the incidence of bipolar disorder. In contrast, a positive association was found between the mean fractal dimension index and the incidence of bipolar disorder. We observed similar results in sensitivity testing and subgroup analysis. Exposure to green spaces with a larger area, greater proximity, lower complexity, and greener area may reduce the risk of bipolar disorder.
Mostrar más [+] Menos [-]Association between traffic-related air pollution and hospital readmissions for rheumatoid arthritis in Hefei, China: A time-series study
2021
Wu, Qian | Xu, Zhiwei | Dan, Yi-Lin | Cheng, Jian | Zhao, Chan-Na | Mao, Yan-Mei | Xiang, Kun | Hu, Yu-Qian | He, Yi-Sheng | Pan, Hai-Feng
Air pollution is an important risk factor for autoimmune diseases, but its association with the recurrence of rheumatoid arthritis (RA) remains unclear so far. This study aimed to investigate the short-term association between traffic-related air pollutants and hospital readmissions for RA in Hefei, China. Data on daily hospital readmissions for RA and traffic-related air pollutants, including particulate matter (PM₂.₅ and PM₁₀), nitrogen dioxide (NO₂), and carbon monoxide (CO), from 2014 to 2018 were retrieved. A time-series approach using generalized linear regression model was employed. The analysis was further stratified by sex, age and season. A total of 1153 readmissions for RA were reported during the study period. A significant association between high-concentration PM₂.₅ (90th percentile) and RA readmissions was observed on lag1 (relative risk (RR) = 1.09, 95% confidence interval (CI): 1.01–1.19) and lasted until lag3 (RR = 1.06, 95%CI: 1.01–1.12). From lag2 to lag5, high-concentration NO₂ (90th percentile) was associated with increased risk of RA readmissions, with the highest RR observed at lag 4 (1.11, 95%CI: 1.05–1.17). Stratified analyses indicated that females and the elderly appeared to be more vulnerable to high-concentration PM₂.₅ and NO₂ exposure. High-concentration PM₂.₅ and NO₂ in cold seasons were consistently significantly associated with increased risk of RA readmissions. Exposure to high-concentration PM₂.₅ and NO₂ was associated with increased risk of RA readmissions. Protective measures against the exposure to high-concentration PM₂.₅ and NO₂ should be taken to reduce the recurrence risk in RA patients, especially in females, the elderly and during cold seasons.
Mostrar más [+] Menos [-]Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer
2021
Hutinel, Marion | Fick, Jerker | Larsson, D.G Joakim | Flach, Carl-Fredrik
Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria.
Mostrar más [+] Menos [-]