Refinar búsqueda
Resultados 1-4 de 4
Impact of microorganisms and entomopathogenic nematodes used for plant protection on solitary and social bee pollinators: Host range, specificity, pathogenicity, toxicity, and effects of experimental parameters
2022
Erler, Silvio | Eckert, Jakob H. | Steinert, Michael | Alkassab, Abdulrahim T.
Pollinating bees are stressed by highly variable environmental conditions, malnutrition, parasites and pathogens, but may also by getting in contact with microorganisms or entomopathogenic nematodes that are used to control plant pests and diseases. While foraging for water, food, or nest material social as well as solitary bees have direct contact or even consume the plant protection product with its active substance (e.g., viruses, bacteria, fungi, etc.). Here, we summarize the results of cage, microcolony, observation hive assays, semi-field and field studies using full-size queen-right colonies. By now, some species and subspecies of the Western and Eastern honey bee (Apis mellifera, A. cerana), few species of bumble bees, very few stingless bee species and only a single species of leafcutter bees have been studied as non-target host organisms. Survival and reproduction are the major criteria that have been evaluated. Especially sublethal effects on the bees' physiology, immune response and metabolisms will be targets of future investigations. By studying infectivity and pathogenic mechanisms, individual strains of the microorganism and impact on different bee species are future challenges, especially under field conditions. Overall, it became evident that honey bees, bumble bees and few stingless bee species may not be suitable surrogate species to make general conclusions for biological mechanisms of bee-microorganism interactions of other social bee species. Solitary bees have been studied on leafcutter bees (Megachile rotundata) only, which shows that this huge group of bees (∼20,000 species worldwide) is right at the beginning to get an insight into the interaction of wild pollinators and microbial plant protection organisms.
Mostrar más [+] Menos [-]Abundance and environmental host range of the SXT/R391 ICEs in aquatic environmental communities
2021
Roman, Veronica L. | Merlin, Christophe | Baron, Sandrine | Larvor, Emeline | Le Devendec, Laetitia | Virta, Marko P.J. | Bellanger, Xavier
Mobile genetic elements (MGEs) such as plasmids or integrative conjugative elements (ICEs) are widely involved in the horizontal transfer of antibiotic resistant genes (ARGs), but their environmental host-range and reservoirs remain poorly known, as mainly assessed through the analysis of culturable and clinical bacterial isolates. In this study, we used a gradual approach for determining the environmental abundance and host-range of ICEs belonging to the SXT/R391 family, otherwise well known to bring ARGs in Vibrio spp. epidemic clones and other pathogens. First, by screening a set of aquatic bacteria libraries covering 1794 strains, we found that almost 1% of the isolates hosted an SXT/R391 element, all belonging to a narrow group of non-O1/non-O139 Vibrio cholerae. However, when SXT/R391 ICEs were then quantified in various aquatic communities, they appeared to be ubiquitous and relatively abundant, from 10⁻⁶ to 10⁻³ ICE copies per 16 S rDNA. Finally, the molecular exploration of the SXT/R391 host-range in two river ecosystems impacted by anthropogenic activities, using the single-cell genomic approach epicPCR, revealed several new SXT/R391 hosts mostly in the Proteobacteria phylum. Some, such as the pathogen Arcobacter cryaerophilus (Campylobacteraceae), have only been encountered in discharged treated wastewaters and downstream river waters, thus revealing a likely anthropogenic origin. Others, such as the non-pathogenic bacterium Neptunomonas acidivorans (Oceanospirillaceae), were solely identified in rivers waters upstream and downstream the treated wastewaters discharge points and may intrinsically belong to the SXT/R391 environmental reservoir. This work points out that not only the ICEs of the SXT/R391 family are more abundant in the environment than anticipated, but also that a variety of unsuspected hosts may well represent a missing link in the environmental dissemination of MGEs from and to bacteria of anthropogenic origin.
Mostrar más [+] Menos [-]Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil
2020
Lu, Wenwei | Wang, Min | Wu, Jianqiang | Jiang, Qiuyan | Jin, Jieren | Jin, Qing | Yang, Wenwu | Chen, Jun | Wang, Yujing | Xiao, Ming
Spread of antibiotic resistance genes (ARGs) poses a worldwide threat to public health and food safety. However, ARG spread by plasmid mobilization, a broad host range transfer system, in agricultural soil has received little attention. Here, we investigated the spread of chloramphenicol resistance gene (CRG) and tetracycline resistance gene (TRG) in agricultural soil by mobilization of pSUP106 under different conditions, including different concentrations of nutrients, temperatures, soil depths, rhizosphere soils, and soil types. The number of resistant bacteria isolated in non-sterilized soil from the experiments was approximately 10⁴ to 10⁷ per gram of soil, belonging to 5–10 species from four genera, including nonpathogen, opportunistic pathogen, pathogen bacteria, and gram-positive and gram-negative bacteria, depending on the experiment conditions. In sterilized soil, higher levels of nutrients and higher temperatures promoted plasmid mobilization and ARG expression. Topsoil and deep soil might not support the spread of antibiotic resistance, while ARG dissemination by plasmid mobilization was better supported by maize rhizosphere and loam soils. All these factors might change bacterial growth and the activity of bacteria and lead to the above influence. Introduction of only the donor and helper, or the donor alone also resulted in the transfer of ARGs and large numbers of antibiotic resistant bacteria (ARB), indicating that some indigenous bacteria contain the elements necessary for plasmid mobilization. Our results showed that plasmid mobilization facilitated dissemination of ARGs and ARB in soil, which led to the disturbance of indigenous bacterial communities. It is important to clear ARG dissemination routes and inhibit the spread of ARGs.
Mostrar más [+] Menos [-]Transport of Escherichia coli phage through saturated porous media considering managed aquifer recharge
2018
Zhang, Wenjing | Li, Shuo | Wang, Shuang | Lei, Liancheng | Yu, Xipeng | Ma, Tianyi
Virus is one of the most potentially harmful microorganisms in groundwater. In this paper, the effects of hydrodynamic and hydrogeochemical conditions on the transportation of the colloidal virus considering managed aquifer recharge were systematically investigated. Escherichia coli phage, vB_EcoM-ep3, has a broad host range and was able to lyse pathogenic Escherichia coli. Bacteriophage with low risk to infect human has been found extensively in the groundwater environment, so it is considered as a representative model of groundwater viruses. Laboratory studies were carried out to analyze the transport of the Escherichia coli phage under varying conditions of pH, ionic strength, cation valence, flow rate, porous media, and phosphate buffer concentration. The results indicated that decreasing the pH will increase the adsorption of Escherichia coli phage. Increasing the ionic strength, either Na⁺ or Ca²⁺, will form negative condition for the migration of Escherichia coli phage. A comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca²⁺ than monovalent Na⁺. As the flow rate increases, the release of Escherichia coli phage increases and the retention of Escherichia coli phage in the aquifer medium reduces. Changes in porous media had a significant effect on Escherichia coli phage migration. With increase of phosphate buffer concentration, the suspension stability and migration ability of Escherichia coli phage are both increased. Based on laboratory-scale column experiments, a one-dimensional transport model was established to quantitatively describe the virus transport in saturated porous medium.
Mostrar más [+] Menos [-]