Refinar búsqueda
Resultados 1-10 de 532
Assessment of water quality in Halda River (the Major carp breeding ground) of Bangladesh Texto completo
2017
Bhuyan, Md. Simul | Bakar, Muhammad
The present study has been conducted to assess the surface water quality of Halda River from September 2015 to March 2016. DO, BOD5, COD, pH, EC, Chloride, Alkalinity, and Hardness concentrations in water samples have been found to range within 0.93-5.15 mg/L, 30-545 mg/L, 43-983 mg/L, 6.3-7.3, 110-524 uS/cm, 12-56 mg/L, 35-67 mg/L, and 38-121 mg/L, respectively. Multivariate statistical analyses, such as Principal Component Analysis (PCA) as well as Correlation Matrix (CM) have revealed significant anthropogenic pollutant intrusions in water. Cluster Analysis (CA) has indicated decent results of rendering three different groups of resemblance between the two sampling sites, reflecting the different water quality indicators of the river system. A very strong positive linear relation has been found between COD and BOD (1.000), hardness and EC (0.993), pH and DO (0.979), hardness and COD (0.929), hardness and BOD (0.924), EC and COD (0.922), and EC and BOD (0.916) at a significance level of 0.01, proving their common origin entirely from industrial effluents, municipal wastes, and agricultural activities. River Pollution Index (RPI) has indicated that the water from rivers at Kalurghat and Modhunaghat varied from low to high pollution, which is due to the former area's being mostly industrial zone with some domestic sewage, while the latter underwent less industrial activities. On the contrary, lots of agricultural activities have been found in Modhunaghat. Use of river water can pose serious problems to human health and aquatic ecosystem via biological food chain. The present research suggests special preference for proper management of the river with eco-friendly automation along with development of the country's sustainable economic.
Mostrar más [+] Menos [-]Reconstruction, assessment, and calibration of potential toxic elements (PTEs) in a 3500-year-long sedimentary record off the northern coast of Shandong Peninsula, China Texto completo
2022
Yang, Zhongkang | Sui, Honglei | Zhang, Youai | Li, Yanqiang | Sun, Liguang | Wang, Jun
The marine environment of coastal Shandong Peninsula has been significantly influenced by anthropogenic activities due to the rapid industrialization and economic development in the past decades. However, the sedimentary records of PTEs in the North Yellow Sea have rarely been reported. In this study, a 209-cm-long sediment core was collected off the northern coast of Shandong Peninsula, analyzed for grain size and elemental compositions, and assessed using EF, Igₑₒ and several numerical Sediment Quality Guidelines (SQGs). The EF and Igₑₒ results suggested that sediment profile could be slightly to moderately polluted with As and Sb, while ecological risk assessment using SQGs showed that As, Cr, Sb and Ni in the sediment profile may have a moderate incidence of toxicity. Our results highlighted the nonnegligible ecological risk of Sb in sediments of North Yellow Sea, and great importance should be attached to the fact that many PTEs may also pose a potential ecological risk to the aquatic organisms, even though their concentrations meet the standards of the Marine Sediments Quality (MSQ). Moreover, the reconstructed PTEs record showed a dramatic increase over the past 250 years, which could be related to the intense anthropogenic activities since the Industrial Revolution. The multivariate statistical analysis results indicated that Co, Cr, Cu, Pb, Ni and Zn may be mainly related to the natural origin, while As and Sb could be influenced by both natural weathering sources and anthropogenic activities. This study provides more insights into the historical record of PTEs in the North Yellow Sea, and lays foundation for future comparison of PTEs sedimentary records.
Mostrar más [+] Menos [-]Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings Texto completo
2022
Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb²⁺ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 μg g⁻¹, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb²⁺ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb²⁺, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb²⁺. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O₂⁻ and H₂O₂, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.
Mostrar más [+] Menos [-]The role of dietary factors on blood lead concentration in children and adolescents - Results from the nationally representative German Environmental Survey 2014–2017 (GerES V) Texto completo
2022
Hahn, Domenica | Vogel, Nina | Höra, Christian | Kämpfe, Alexander | Schmied-Tobies, Maria | Göen, Thomas | Greiner, Annette | Aigner, Annette | Kolossa-Gehring, Marike
In industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3–17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links.
Mostrar más [+] Menos [-]High level of zinc triggers phosphorus starvation by inhibiting root-to-shoot translocation and preferential distribution of phosphorus in rice plants Texto completo
2021
Ding, Jingli | Liu, Lu | Wang, Chuang | Shi, Lei | Xu, Fangsen | Cai, Hongmei
Since the urbanization and industrialization are wildly spread in recent decades, the concentration of Zn in soil has increased in various regions. Although the interactions between P and Zn has long been recognized, the effect of high level of Zn on P uptake, translocation and distribution in rice and its molecular mechanism are not fully understood. In this study, we conducted both hydroponic culture and field trial with different combined applications of P and Zn to analyze the rice growth and yield, the uptake, translocation and distribution of P and Zn, as well as the P- and Zn-related gene expression levels. Our results showed that high level of Zn decreased the rice biomass and yield production, and inhibited the root-to-shoot translocation and distribution of P into new leaves by down-regulating P transporter genes OsPT2 and OsPT8 in shoot, which was controlled by OsPHR2-OsmiR399-OsPHO2 module. High Zn supply triggered P starvation signal in root, thereafter increased the activities of both root-endogenous and -secreted acid phosphatase to release more Pi, and induced the expression OsPT2 and OsPT8 to uptake more P for plant growth. On the other hand, high level of P significantly decreased the Zn concentrations in both root and shoot, and the root uptake ability of Zn through altering the expression levels of OsZIPs, which were further confirmed by the P high-accumulated mutant osnla1-2 and OsPHR2-OE transgenic plant. Taken together, we revealed the physiological and molecular mechanisms of P–Zn interactions, and proposed a working model of the cross-talk between P and Zn in rice plants. Our results also indicated that appropriate application of P fertilizer is an effective strategy to reduce rice uptake of excessive Zn when grown in Zn-contaminated soil.
Mostrar más [+] Menos [-]Organophosphate esters in surface soils from a heavily urbanized region of Eastern China: Occurrence, distribution, and ecological risk assessment Texto completo
2021
Tang, Jianfeng | Sun, Jing | Ke, Ziyan | Yin, Hongling | Yang, Lei | Yen, Haw | Li, Xinhu | Xu, Yaoyang
Organophosphate esters (OPEs) pose increasing concerns for their widespread distribution in soil environments and potential threat to human health. In this study, we investigated the occurrence and associated risks of seven OPEs in surface soils and the potential influence of human activities on soil OPE contamination in a heavily urbanized region of the Yangtze River Delta in Eastern China. All target OPEs were detected in the soil samples (100% of samples) reflecting their widespread distribution in the study region. The total OPE concentration (the sum of the seven OPEs) ranged from 162.7 to 986.0 ng/g on a dry weight basis, with a mean value of 469.3 ± 178.6 ng/g. Tris (2-butoxyethyl) phosphate was the main compound, accounting for 67–78% of the total OPE concentration. Ecological risk assessment showed that tris(2-chloroisopropyl) phosphate, tris(2,3-dichloropropyl) phosphate, tris(2-butoxyethyl) phosphate, and tris(2-ethylhexyl) phosphate posed a medium potential risk to terrestrial biota (0.1 < risk quotient <1). The human exposure estimation showed insignificant risks to local population. Redundancy analysis revealed that the individual and total OPE contaminations were positively correlated with human activity parameters. The total OPE concentrations were positively correlated to population density (R² = 0.38, P < 0.001), and urban land use percentage (R² = 0.39, P < 0.001), while negatively correlated to forest land use percentage (R² = 0.59, P < 0.001), suggesting a significant contribution of human disturbance to OPE pollution. These results can facilitate OPE contamination control and promote sustainable soil management in urbanized and industrialized regions.
Mostrar más [+] Menos [-]Lead isotopes in the Central Yellow Sea Mud: Evidence of atmospheric deposition and its implication for regional energy consumption shift Texto completo
2021
Wu, Bin | Wu, Xiaodan | Shi, Xuefa | Zhang, Xuelei | Qiao, Shuqing | Hu, Limin | Liu, Jihua | Liu, Shengfa | Zhang, Jun | Zhang, Hui | Zhu, Aimei
Anthropogenic activities have increased lead (Pb) emissions and impacted their spatiotemporal distributions in coastal seas. To quantify the increasing variability of Pb and identify the specific origins and their corresponding magnitudes, Pb and Pb isotopes are investigated in a well-placed sediment core covering the period of 1928–2008 in the Central Yellow Sea Mud (CYSM). The concentration of Pb varied from 27.17 μg/g to 37.30 μg/g upwardly along the core, with pronounced anthropogenic disturbance since the late 1960s. The Pb input history of the CYSM experienced five stages according to industrialization levels and Pb contamination, with relative pristine stages from 1928 to 1969 and human activity-impacted stages from 1969 to 2008. The ²⁰⁶Pb/²⁰⁷Pb ratio demonstrated an overall decreasing profile while the ²⁰⁸Pb/²⁰⁶Pb ratio displayed the reverse trend upwardly along the core, possibly due to the atmospheric delivery of anthropogenic Pb emissions from northern China. Furthermore, ²⁰⁸Pb/²⁰⁶Pb vs. ²⁰⁶Pb/²⁰⁷Pb shows certain linearity between natural sediment sources and anthropogenic emissions of Pb (atmospheric deposition); thus, atmospheric inputs account for 34–43% of the Pb in the sediment since Pb enrichment using the two-endmember mixing model. Moreover, the steep decrease in ²⁰⁶Pb/²⁰⁷Pb and rapid increase in ²⁰⁸Pb/²⁰⁶Pb since the 1970s suggest the introduction of leaded gasoline and the increasing proportionate consumption of gasoline relative to total energy consumption. The continuously decreasing ²⁰⁶Pb/²⁰⁷Pb ratio and increasing ²⁰⁸Pb/²⁰⁶Pb ratio since 2000 are the combined results of coal consumption, nonferrous smelting, and residual Pb contamination from leaded gasoline, which is quite distinctive from cases in North America and Europe. The relatively high ²⁰⁶Pb/²⁰⁷Pb and low ²⁰⁸Pb/²⁰⁶Pb ratios before 1969 represent the natural Pb isotopic signatures. Hence, Pb input is significantly affected by regional energy consumption and restructuring, and the Pb isotopic ratios may be a potential proxy for the shift in energy consumption.
Mostrar más [+] Menos [-]Integration of environmental metabolomics and physiological approach for evaluation of saline pollution to rice plant Texto completo
2021
Ma, Nyuk Ling | Lam, Su Datt | Che Lah, Wan Afifudeen | Aḥmad, ʻAzīz | Rinklebe, Jörg | Sonne, Christian | Peng, Wanxi
Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5–20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
Mostrar más [+] Menos [-]The influence of industry-related air pollution on birth outcomes in an industrialized area Texto completo
2021
Bergstra, Arnold D. | Brunekreef, B. | Burdorf, Alex
Recent studies suggests that air pollution, from among others road traffic, can influence growth and development of the human foetus during pregnancy. The effects of air pollution from heavy industry on birth outcomes have been investigated scarcely.Our aim was to investigate the associations of air pollution from heavy industry on birth outcomes.A cross-sectional study was conducted among 4488 singleton live births (2012–2017) in the vicinity of a large industrial area in the Netherlands. Information from the birth registration was linked with a dispersion model to characterize annual individual-level exposure of pregnant mothers to air pollutants from industry in the area. Associations between particulate matter (PM₁₀), nitrogen oxides (NOX), sulphur dioxide (SO₂), and volatile organic compounds (VOC) with low birth weight (LBW), preterm birth (PTB), and small for gestational age (SGA) were investigated by logistic regression analysis and with gestational age, birth weight, birth length, and head circumference by linear regression analysis.Exposures to NOX, SO₂, and VOC (per interquartile range of 1.16, 0.42, and 0.97 μg/m³ respectively) during pregnancy were associated with LBW (OR 1.20, 95%CI 1.06–1.35, OR 1.20, 95%CI 1.00–1.43, and OR 1.21, 95%CI 1.08–1.35 respectively). NOX and VOC were also associated with PTB (OR 1.14, 95%CI 1.01–1.29 and OR 1.17, 95%CI 1.04–1.31 respectively). Associations between exposure to air pollution and birth weight, birth length, and head circumference were statistically significant. Higher exposure to PM₁₀, NOX, SO₂ and VOC (per interquartile range of 0.41, 1.16, 0.42, and 0.97 μg/m³ respectively) was associated with reduced birth weight of 21 g to 30 g.The 90th percentile industry-related PM₁₀ exposure corresponded with an average birth weight decrease of 74 g.
Mostrar más [+] Menos [-]Pollution characteristics and ecological risks associated with heavy metals in the Fuyang river system in North China Texto completo
2021
Zhao, Jiating | Wu, Erwei | Zhang, Bowen | Bai, Xu | Lei, Pei | Qiao, Xiuwen | Li, Yu-Feng | Li, Bai | Wu, Gang | Gao, Yuxi
The Fuyang River system (FRS) in north China, for a long time, is seriously polluted with organic compounds and heavy metals due to industrialization. However, the information on heavy metal pollution in this area is still limited, and health risks raised by trace elements are neglected up to now. To characterize the heavy metal pollutants and assess their potential ecological risks scientifically in FRS, surface sediments were collected from 66 sampling sites selected according to the hydrological and anthropogenic conditions along the river. A total of twelve metal pollutants (e.g., Cr, As, and Hg) in the sediments were detected among the distributaries. A combining application of geoaccumulation index (Igₑₒ), ratio of secondary phase and primary phase (RSP), and the ecological risk factor (Erⁱ) in this study gave systematic assessment results of single or combined pollution status raised by heavy metals in this area. The results show that Cr, Ni, Cu, As, Cd, Co, and Sn are mainly dispersed in the river reaches of Xingtai City and pose potential health risks in midstream, as per the geoaccumulation index and Pearson’s correlation analyses. In particular, Cd accumulates strongly in sediments of Ming River and Aixinzhuang dam from Xingtai City. In upstream and downstream of FRS, the potential ecological risk is low, except in Yongnian County where high ecological risk was caused by Cd and Hg. These findings provide new insights into the pollution characteristics and assessment of the potential ecological risks induced by heavy metals along FRS, which suggest new directions should strategically tend to typical pollutants control by policy formulation and taking effective measures to prevent and manage heavy metal pollution in North China.
Mostrar más [+] Menos [-]