Refinar búsqueda
Resultados 1-10 de 406
Histopathological lesions and DNA adducts in the liver of European 1 flounder (Platichthysflesus) collected in the Seine estuary versus two reference estuarine systems on the FrenchAtlantic coast
2013
Cachot , Jérôme(auteur de correspondance) (Université de Bordeaux, Talence(France).) | Cherel , Yan (INRA , Nantes (France). UMR 0703 Physiopathologie animale et biothérapies du muscle et du système nerveux) | Larcher , Thibaut (INRA , Nantes (France). UMR 0703 Physiopathologie animale et biothérapies du muscle et du système nerveux) | Pfohl-Leszkowicz , Annie (Université de Toulouse CNRS, Castanet-Tolosan(France).) | Laroche , Jean (Université de BrestLaboratoire des Sciences de l’Environnement Marin LEMARInstitut Universitaire Européen de la Mer, BrestPlouzané(France). UMR 6539) | Quiniou , Louis (Université de BrestLaboratoire des Sciences de l’Environnement Marin LEMARInstitut Universitaire Européen de la Mer, BrestPlouzané(France). UMR 6539) | Morin , Jocelyne (Institut Français de Recherche pour l'Exploitation de la Mer, Port en bessin(France).) | Schmitz , Julien (Institut Français du Pétrole, Rueil-Malmaison(France).) | Burgeot , Thierry (Institut Français de Recherche pour l'Exploitation de la Mer, Nantes(France). Département Polluants chimiques) | Pottier , Didier (Université de Caen Basse Normandie, Caen(France). UR ABTE EA 4651)
Fine particulate matter, airway inflammation, stress response, non-specific immune function and buccal microbial diversity in young adults
2022
Lin, Zhijing | Chen, Ping | Yuan, Zhi | Yang, Liyan | Miao, Lin | Wang, Hua | Xu, Dexiang
Fine particulate matter (PM₂.₅) has been associated with risk of oral and respiratory diseases. However, the biological mechanisms of adverse oral and respiratory health response to PM₂.₅ fluctuation have not been well characterized. This study aims to explore the relationships of PM₂.₅ with airway inflammation, salivary biomarkers and buccal mucosa microbiota. We performed a panel study among 40 college students involving 4 follow-ups from August to October 2021 in Hefei, Anhui Province, China. Health outcomes included fractional exhaled nitric oxide (FeNO), salivary biomarkers [C-reactive protein (CRP), cortisol, lysozyme and alpha-amylase] and buccal mucosa microbial diversity. Linear mixed-effect models were applied to explore the cumulative impacts of PM₂.₅ on health indicators. PM₂.₅ was positively correlated with FeNO, CRP, cortisol and alpha-amylase, while negatively with lysozyme. Per 10-μg/m³ increase in PM₂.₅ was linked to maximum increments in FeNO of 10.71% (95%CI: 2.01%, 19.41%) at lag 0–24 h, in CRP of 7.10% (95%CI: 5.39%, 8.81%) at lag 0–24 h, in cortisol of 1.25% (95%CI: 0.44%, 2.07%) at lag 0–48 h, and in alpha-amylase of 2.12% (95%CI: 0.53%, 3.71%) at lag 0–24 h, while associated with maximum decrement in lysozyme of 0.53% (95%CI: 0.12%, 0.95%) at lag 0–72 h. Increased PM₂.₅ was linked to reduction in the richness and evenness of buccal microbe and o_Bacillales and o_Bacteroidales were identified as differential microbes after PM₂.₅ inhalation. Bio-information analysis indicated that immunity system pathway was the most important enriched abundant process altered by PM₂.₅ exposure. In summary, short-term PM₂.₅ exposure may impair oral and respiratory health by inducing inflammatory and stress responses, weakening immune function and altering buccal mucosa microbial diversity.
Mostrar más [+] Menos [-]Methyltransferase-like 3 leads to lung injury by up-regulation of interleukin 24 through N6-methyladenosine-dependent mRNA stability and translation efficiency in mice exposed to fine particulate matter 2.5
2022
He, Xiang | Zhang, Lei | Liu, Shengbin | Wang, Junyi | Liu, Yao | Xiong, Anying | Jiang, Manling | Luo, Li | Ying, Xiong | Li, Guoping
Fine particulate matter 2.5 (PM2.5) exposure leads to the progress of pulmonary disease. It has been reported that N6-methyladenosine (m6A) modification was involved in various biological processes and diseases. However, the critical role of m6A modification in pulmonary disease during PM2.5 exposure remains elusive. Here, we revealed that lung inflammation and mucus production caused by PM2.5 were associated with m6A modification. Both in vivo and in vitro assays demonstrated that PM2.5 exposure elevated the total level of m6A modification as well as the methyltransferase like 3 (METTL3) expression. Integration analysis of m6A RNA immunoprecipitation-seq (meRIP-seq) and RNA-seq discovered that METTL3 up-regulated the expression level and the m6A modification of Interleukin 24 (IL24). Importantly, we explored that the stability of IL24 mRNA was enhanced due to the increased m6A modification. Moreover, the data from qRT-PCR showed that PM2.5 also increased YTH N6-Methyladenosine RNA Binding Protein 1 (YTHDF1) expression, and the up-regulated YTHDF1 augmented IL24 mRNA translation efficiency. Down-regulation of Mettl3 reduced Il24 expression and ameliorated the pulmonary inflammation and mucus secretion in mice exposed to PM2.5. Taken together, our finding provided a comprehensive insight for revealing the significant role of m6A regulators in the lung injury via METTL3/YTHDF1-coupled epitranscriptomal regulation of IL24.
Mostrar más [+] Menos [-]A common fungicide tebuconazole promotes colitis in mice via regulating gut microbiota
2022
Meng, Zhiyuan | Sun, Wei | Liu, Wan | Wang, Yu | Jia, Ming | Tian, Sinuo | Chen, Xiaojun | Zhu, Wentao | Zhou, Zhiqiang
As a common fungicide, tebuconazole are ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of exposure to tebuconazole on colitis in mice and explored its underlying mechanism. Specifically, exposure to tebuconazole could cause structural damage and inflammatory cell infiltration in colon tissue, activate the expression of inflammation-related genes, disrupt the expression of barrier function-related genes, and induce the colonic inflammation in mice. Similarly, exposure to tebuconazole could also exacerbate DSS-induced colitis in mice. In addition, we found that tebuconazole also could change the composition of the gut microbiota. In particular, tebuconazole significantly increases the relative abundance of Akkermansia of mice. Moreover, tebuconazole resulted in metabolic profiles disorders of the serum, leading to significant changes in the relative contents of metabolites involving glycolipid metabolism and amino acid metabolism. Particularly, the results of the gut microbiota transplantation experiment showed that exposure to tebuconazole could induced colonic inflammation in mice in a gut microbiota–dependent manner. Taken together, these results indicated that tebuconazole could induce colitis in mice via regulating gut microbiota. Our findings strongly support the concept that the gut microbiota is a key trigger of inflammatory bowel disease caused by pesticide intake.
Mostrar más [+] Menos [-]Gestational PCB52 exposure induces hepatotoxicity and intestinal injury by activating inflammation in dam and offspring mice: A maternal and progeny study
2022
Xu, Ling-Ling | Zhang, Qin-Yao | Chen, Yu-Kui | Chen, Li-Jian | Zhang, Kai-Kai | Wang, Qi | Xie, Xiao-Li
Although Polychlorinated biphenyl (PCB) levels are decreased in the environment, the adverse effects of gestational exposure on the mother and offspring cannot be ignored due to the vulnerability of the fetus. In the present study, pregnant Balb/c mice were administered PCB52 (1 mg/kg BW/day) or corn oil vehicle by gavage until parturition. In the dams, PCB52 caused histopathological changes in the liver, higher serum levels of aminotransferase and alanine aminotransferase, and activated apoptosis and autophagy, suggesting hepatotoxicity. Overexpressed indicators of TLR4 pathway were observed in the liver of PCB52-exposed dams, indicated hepatic inflammation. Moreover, PCB52 exposure weakened the intestinal barrier and triggered inflammatory response, which might contribute to the hepatic inflammation by gut-liver axis. In the pups, prenatal PCB52 exposure affected the sex ratio at birth and reduced birth length and weights. Similar to the dams, prenatal PCB52 exposure induced hepatotoxicity in the pups without gender difference. Consistent with the alteration of gut microbiota, intestinal inflammation was confirmed, accompanying the disruption in the intestinal barrier and the activation of apoptosis and autophagy in the PCB52-exposed pups. Intestinal injury might be responsible for hepatotoxicity at least in part. Taken together, these findings suggested that gestational PCB52 exposure induced hepatic and intestinal injury in both maternal and offspring mice by arousing inflammation.
Mostrar más [+] Menos [-]Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: The gut-lung axis
2022
Keulers, Loret | Dehghani, Ali | Knippels, Leon | Garssen, J. | Papadopoulos, Nikolaos | Folkerts, Gert | Braber, Saskia | van Bergenhenegouwen, Jeroen
Air pollution exposure is a public health emergency, which attributes globally to an estimated seven million deaths on a yearly basis We are all exposed to air pollutants, varying from ambient air pollution hanging over cities to dust inside the home. It is a mixture of airborne particulate matter and gases that can be subdivided into three categories based on particle diameter. The smallest category called PM₀.₁ is the most abundant. A fraction of the particles included in this category might enter the blood stream spreading to other parts of the body. As air pollutants can enter the body via the lungs and gut, growing evidence links its exposure to gastrointestinal and respiratory impairments and diseases, like asthma, rhinitis, respiratory tract infections, Crohn's disease, ulcerative colitis, and abdominal pain. It has become evident that there exists a crosstalk between the respiratory and gastrointestinal tracts, commonly referred to as the gut-lung axis. Via microbial secretions, metabolites, immune mediators and lipid profiles, these two separate organ systems can influence each other. Well-known immunomodulators and gut health stimulators are probiotics, prebiotics, together called synbiotics. They might combat air pollution-induced systemic inflammation and oxidative stress by optimizing the microbiota composition and microbial metabolites, thereby stimulating anti-inflammatory pathways and strengthening mucosal and epithelial barriers. Although clinical studies investigating the role of probiotics, prebiotics, and synbiotics in an air pollution setting are lacking, these interventions show promising health promoting effects by affecting the gastrointestinal- and respiratory tract. This review summarizes the current data on how air pollution can affect the gut-lung axis and might impact gut and lung health. It will further elaborate on the potential role of probiotics, prebiotics and synbiotics on the gut-lung axis, and gut and lung health.
Mostrar más [+] Menos [-]Role of RNA m6A modification in titanium dioxide nanoparticle-induced acute pulmonary injury: An in vitro and in vivo study
2022
Ruan, Fengkai | Liu, Changqian | Wang, Yi | Cao, Xisen | Tang, Zhen | Xu, Jiaying | Zeng, Jie | Yin, Hanying | Zheng, Naying | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong
RNA N⁶-methyladenosine (m⁶A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO₂)-induced acute pulmonary injury is associated with the m⁶A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m⁶A modification and the bioeffects of several engineered nanoparticles (nTiO₂, nAg, nZnO, nFe₂O₃, and nCuO) were verified thorough in vitro experiments. nFe₂O₃, nZnO, and nTiO₂ exposure significantly increased the global m⁶A level in A549 cells. Our study further revealed that nTiO₂ can induce m⁶A-mediated acute pulmonary injury. Mechanistically, nTiO₂ exposure promoted methyltransferase-like 3 (METTL3)-mediated m⁶A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m⁶A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO₂ exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m⁶A upregulation, and the inflammatory response caused by nTiO₂ both in vitro and in vivo. In conclusion, our study demonstrates that m⁶A is a potential intervention target for alleviating the adverse effects of nTiO₂-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.
Mostrar más [+] Menos [-]GCN5-mediated PKM2 acetylation participates in benzene-induced hematotoxicity through regulating glycolysis and inflammation via p-Stat3/IL17A axis
2022
Zhang, Wei | Guo, Xiaoli | Ren, Jing | Chen, Yujiao | Wang, Jingyu | Gao, Ai
Benzene is a common environmental carcinogen that induces leukemia. Studies suggest that metabolic disorder has a relationship with the toxicity of benzene. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. However, the upstream and downstream regulatory mechanisms of PKM2 in benzene-induced hematotoxicity and the therapeutic effects of targeting PKM2 in vivo are unclear. This study aims to provide insights into the new mechanism of benzene-induced hematotoxicity and reveal the therapeutic significance of targeting PKM2. Herein, we demonstrated that PKM2-dependent glycolysis contributes to benzene-induced hematotoxicity by regulating inflammation reaction. Mechanistically, acetylated proteomics revealed that 1,4-benzoquinone (1,4-BQ) induced acetylation of PKM2 at position K66, and this modification contributed to the increase of PKM2 expression and can be inhibited by inhibition of acetyltransferase GCN5. Meanwhile, the elevated PKM2 was shown to prompt the activation of nuclear phosphorylated Stat3 (p-Stat3) and IL17A. Clinically, pharmacological inhibition of PKM2 alleviated the blood toxicity induced by benzene, which was mainly characterized by an increase in routine blood parameters and improvement of hematopoietic imbalance. Besides, elevated PKM2 is a promising biomarker in people occupationally exposed to benzene. Overall, we identified PKM2/p-Stat3/IL-17A axis participates in the hematotoxicity of benzene, and targeting PKM2 has certain therapeutic implications in hematologic diseases.
Mostrar más [+] Menos [-]Ractopamine at legal residue dosage accelerates atherosclerosis by inducing endothelial dysfunction and promoting macrophage foam cell formation
2022
Chen, Chia-Hui | Guo, Bei-Chia | Hu, Po-An | Lee, Hsueh-Te | Hu, Hsuan-Yun | Hsu, Man-Chen | Chen, Wen-Hua | Lee, Tzong-Shyuan
Ractopamine, a synthetic β-adrenoreceptor agonist, is used as an animal feed additive to increase food conversion efficiency and accelerate lean mass accretion in farmed animals. The U.S. Food and Drug Administration claimed that ingesting products containing ractopamine residues at legal dosages might not cause short-term harm to human health. However, the effect of ractopamine on chronic inflammatory diseases and atherosclerosis is unclear. Therefore, we investigated the effects of ractopamine on atherosclerosis and its action mechanism in apolipoprotein E-null (apoe⁻/⁻) mice and human endothelial cells (ECs) and macrophages. Daily treatment with ractopamine for four weeks increased the body weight and the weight of brown adipose tissues and gastrocnemius muscles. However, it decreased the weight of white adipose tissues in apoe⁻/⁻ mice. Additionally, ractopamine exacerbated hyperlipidemia and systemic inflammation, deregulated aortic cholesterol metabolism and inflammation, and accelerated atherosclerosis. In ECs, ractopamine treatment induced endothelial dysfunction and increased monocyte adhesion and transmigration across ECs. In macrophages, ractopamine dysregulated cholesterol metabolism by increasing oxidized low-density lipoprotein (oxLDL) internalization and decreasing reverse cholesterol transporters, increasing oxLDL-induced lipid accumulation. Collectively, our findings revealed that ractopamine induces EC dysfunction and deregulated cholesterol metabolism of macrophages, which ultimately accelerates atherosclerosis progression.
Mostrar más [+] Menos [-]Early life PCB138 exposure induces kidney injury secondary to hyperuricemia in male mice
2022
Ruan, Fengkai | Liu, Changqian | Hu, Weiping | Ruan, Jinpeng | Ding, Xiaoyan | Zhang, Lu | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong | Huang, Jiyi
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs) that have adverse effects on human health. However, the long-term health effects and potential mechanism of neonatal exposure to PCBs are still unclear. In this study, nursing male mice exposed to PCB138 at 0.5, 5, and 50 μg/kg body weight (bw) from postnatal day (PND) 3 to PND 21 exhibited increased serum uric acid levels and liver uric acid synthase activity at 210 days of age. We also found an increased kidney somatic index in the 50 μg/kg group and kidney fibrosis in the 5 and 50 μg/kg groups. Mechanistically, PCB138 induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which might have led to inflammatory responses, such as activation of the NF-κB (nuclear factor kappa-B) and NLRP3 (NOD-like receptor protein 3) pathways. The inflammatory response might regulate renal fibrosis and hypertrophy. In summary, this study reports a long-term effect of neonatal PCB exposure on uric acid metabolism and secondary nephrotoxicity and clarifies the underlying mechanism. Our work also indicates that early life pollutant exposure may be an important cause of diseases later in life.
Mostrar más [+] Menos [-]