Refinar búsqueda
Resultados 1-10 de 107
Increasing salinization of freshwater limits invasiveness of a live-bearing fish: Insights from behavioral and life-history traits
2022
Zhou, Linjun | Liu, Kai | Zhao, Yu | Cui, Ling | Dong, Chenglong | Wang, Zaizhao
Biological invasions and continued salinization of freshwater are two global issues with largely serious ecological consequences. Increasing salinity in freshwater systems, as an environmental stressor, may negatively affect normal life activities in fish. It has been documented that salinity limits the invasive success of alien species by mediating physiological and life-history performances, however, there are few studies on how salinity affects its invasive process via altered behaviors. Using wild-caught invasive western mosquitofish (Gambusia affinis) as animal model, in this study, we asked whether gradual increasing salinity affects behaviors (personality and mate choice decision here), life-history traits, as well as the correlation between them by exposing G. affinis to three levels salinity (freshwater, 10 and 20‰). Results showed that, with increased salinity, male tended to be shyer, less active, less sociable, and reduced desire to mate, and female tended to be shyer, less active and lost preferences for the larger male. Furthermore, across salinity treatments, male exhibited reduced body fat content and rising reproduction allocation, however, pregnant female revealed diametrically opposed trends. In addition, the correlation between life-history traits and behaviors was only identified in pregnant female. It seems that either salinity or life-history traits directly affects mosquitofish behaviors. In summary, our results partially emphasize the harmful consequences of salinity on both life-history traits and behavioral performances. These findings provide a novel perspective on how salinity potentially affect fish fitness via altering personalities, mate choice decisions, as well as body condition, and hence supports the idea that salinity could affect the spread of invasive mosquitofish.
Mostrar más [+] Menos [-]Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants
2020
Zhao, Cong-Ying | Liu, Yuanyuan | Shi, Xue-Ping | Wang, Yong-Jian
Changes in soil nutrients variability could significantly interact with other global change processes (such as community dynamics, biological invasion). Global exchange and accumulation of alien species caused environmental and economic threats in the introduced ranges. Their invasion success or not in local plant communities is largely depended on the interactions and competitive outcomes with other species and environmental conditions. Here, we tested whether the interactions of nutrient variability and competitor identity influence plant performance, potential invasion success of invasive species and their co-existence with native species. In both greenhouse and field experiment, we subjected three congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China to different nutrient variability (constant high, multiple pulses and/or single pulse) and competitor identity (intra-specific competitors, native competitors, invasive competitors and both native & invasive competitors). Our results showed that total biomass or the increase of cover of invasive species was significantly larger than those of the native species regardless of competitor identity. Native competitors significantly decreased biomass proportion of native species, but did not affect that of invasive species. The whole community with invasive target species accumulated more total biomass than with native species under multiple pulses nutrient when with the native competitors. Invasive species produced significantly higher biomass proportion than natives under all competitor identity treatments except for native & invasive competitors. Multiple mixed competitors (i.e. native & invasive competitors) decreased the plant performance and dominance of invasive target species, to some extent, thus construction of multi-species competition might facilitate coexistence of native and invasive species in communities. Interactions between native competitors or native & invasive competitors, and nutrient variability play important roles in plant performance and potential invasion success in communities. Multiple invasional interference may have significant implications for the co-existence of invasive and native species, and for management of invasive species.
Mostrar más [+] Menos [-]Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: A Bayesian perspective
2018
Visha, Ariola | Gandhi, Nilima | Bhavsar, Satyendra P. | Arhonditsis, George B.
We examine the spatio-temporal trends of mercury, a well-known global legacy contaminant, in eleven fish species across all of the Canadian Great Lakes. These particular fish species are selected based on their ecological, commercial, and recreational importance to the biodiversity and fishing industry of the Great Lakes. We present a two-pronged Bayesian methodological framework to rigorously assess mercury temporal trends across multiple fish species and locations. In the first part of our analysis, we develop dynamic linear models to delineate the total mercury levels and rates of change, while explicitly accounting for the covariance between fish length and mercury levels in fish tissues. We then use hierarchical modelling to evaluate the spatial variability of mercury contamination between nearshore and offshore locations, as well as to examine the hypothesis that invasive species have induced distinct shifts on fish mercury contamination trends. Our analysis suggests that the general pattern across the Great Lakes was that the elevated mercury concentrations during the 1970s had been subjected to a declining trend throughout the late 1980s/early 1990s, followed by a gradual stabilization after the late 1990s/early 2000s. The declining trend was more pronounced with top fish predators, whereas benthivorous fish species mainly underwent wax-and-wane cycles with a weaker evidence of a long-term declining trend. Historically contaminated regions, designated as Areas of Concern, and bays receiving riverine inputs are still characterized by mercury concentrations that can lead to consumption restrictions. Lake Erie displayed the lowest mercury levels across all the fish species examined. However, several species of commercial importance showed a reversing (increasing) trend in the 2000s, although their current levels do not pose any major concerns for consumption advisories. These recent trend reversals can be linked with systematic shifts in energy trophodynamics along with the food web alterations induced from the introduction of non-native species, and the potentially significant fluxes from the atmosphere.
Mostrar más [+] Menos [-]Tadpoles of the horned frog Ceratophrys ornata exhibit high sensitivity to chlorpyrifos for conventional ecotoxicological and novel bioacoustic variables
2018
Salgado Costa, C. | Ronco, A.E. | Trudeau, V.L. | Marino, D. | Natale, G.S.
Previous studies reported that some species of the family Ceratophryidae are able to produce sounds during premetamorphic tadpole stages. We have now determined the effects of the cholinesterase-inhibiting insecticide chlorpyrifos (CPF) on sounds emitted by tadpoles of Ceratophrys ornata. Tadpoles were exposed individually in order to evaluate the progression of effects. Effects on sound production were complemented with common ecotoxicological endpoints (mortality, behavior, abnormalities and growth inhibition). C. ornata was found to be more sensitive than other native (= 67%, 50%) and non-native species (= 75%, 100%) considering lethal and sublethal endpoints, respectively. Effects on sounds appear along with alterations in swimming, followed by the presence of mild, then severe abnormalities and finally death. Therefore, sound production may be a good biomarker since it anticipates other endpoints that are also affected by CPF. Ceratophrys ornata is a promising new model species in ecotoxicology.
Mostrar más [+] Menos [-]Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species
2016
De La Riva, Deborah G. | Trumble, John T.
Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL−1) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL−1) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species.
Mostrar más [+] Menos [-]Development of water quality criteria for phenanthrene and comparison of the sensitivity between native and non-native species
2015
Wu, Jiang-Yue | Yan, Zhen-Guang | Liu, Zheng-Tao | Liu, Ji-dong | Liang, Feng | Wang, Xiao-Nan | Wang, Weili
Phenanthrene (PHE) is a priority polycyclic aromatic hydrocarbon (PAH) which is toxic to aquatic organisms. However, there has been no paper dealing with water quality criteria (WQC) of PHE due to the shortage of toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 8 acute toxicity tests and 3 chronic toxicity tests using 8 Chinese native aquatic species from different taxonomic levels, and the water quality criteria was derived using 3 methods. Furthermore, differences of species sensitivity distributions (SSDs) between native and non-native species were compared. A criterion maximum concentration of 0.0514 mg/L and a criterion continuous concentration of 0.0186 mg/L were developed according to the US EPA guidelines. Finally, by using risk quotient (RQ) to assess the site-specific ecological risk in Liao River, the results indicated that the PHE might pose no risk to local aquatic species.
Mostrar más [+] Menos [-]Incidence of invasive macrophytes on methylmercury budget in temperate lakes: Central role of bacterial periphytic communities
2013
Gentès, Sophie | Monperrus, Mathilde | Legeay, Alexia | Maury-Brachet, Régine | Davail, Stephane | André, Jean-Marc | Guyoneaud, Rémy
Several studies demonstrated high mercury (Hg) methylation and demethylation in the periphyton associated with floating roots in tropical ecosystems. The importance of aquatic plants on methylmercury production in three temperate ecosystems from south-western France was evaluated through Hg species concentrations, and Hg methylation/demethylation activities by using stable isotopic tracers (199Hg(II), Me201Hg). Hg accumulation and high methylation and demethylation yields were detected in plant roots and periphyton, whereas results for sediment and water were low to insignificant. The presence of sulfate reducing prokaryotes was detected in all compartments (T-RFLP based on dsrAB amplified through nested PCR) and their main role in Hg methylation could be demonstrated. In turn, sulfate reduction inhibition did not affect demethylation activities. The estimation of net MeHg budgets in these ecosystems suggested that aquatic rhizosphere is the principal location for methylmercury production and may represent an important source for the contamination of the aquatic food chain.
Mostrar más [+] Menos [-]Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition
2013
Krevš, Alina | Darginavičienė, Jūratė | Gylytė, Brigita | Grigutytė, Reda | Jurkonienė, Sigita | Karitonas, Rolandas | Kučinskienė, Alė | Pakalnis, R. | Sadauskas, Kazys | Vitkus, Rimantas | Manusadžianas, Levonas
Throughout 90-day biodegradation under microaerobic conditions, invasive to Lithuania species boxelder maple (Acer negundo) leaves lost 1.5-fold more biomass than that of autochthonous black alder (Alnus glutinosa), releasing higher contents of Ntot, ammonium and generating higher BOD7. Boxelder maple leaf leachates were characterized by higher total bacterial numbers and colony numbers of heterotrophic and cellulose-decomposing bacteria than those of black alder. The higher toxicity of A. negundo aqueous extracts and leachates to charophyte cell (Nitellopsis obtusa), the inhabitant of clean lakes, were manifested at mortality and membrane depolarization levels, while the effect on H+-ATPase activity in membrane preparations from the same algae was stronger in case of A. glutinosa. Duckweed (Lemna minor), a bioindicator of eutrophic waters, was more sensitive to leaf leachates of A. glutinosa. Fallen leaves and leaf litter leachates from invasive and native species of trees, which enter water body, affect differently microbial biodestruction and aquatic vegetation in freshwater systems.
Mostrar más [+] Menos [-]Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile
2013
Préndez, Margarita | Carvajal, Virginia | Corada, Karina | Morales, Johanna | Alarcón, Francis | Peralta, Hugo
Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management.
Mostrar más [+] Menos [-]Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques
2009
Piola, Richard F. | Johnston, Emma L.
Recent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth. In contrast, native species displayed negative growth and reduced feeding efficiency across most exposure levels. Field transplant experiments supported laboratory findings, with NIS growing faster under Cu conditions. In field-based larval assays, NIS showed strong recruitment and growth in the presence of Cu relative to the native species. We suggest that strong selective pressures exerted by the toxic antifouling paints used on transport vectors (vessels), combined with metal contamination in estuarine environments, may result in metal tolerant NIS advantaged by anthropogenically modified selection regimes.
Mostrar más [+] Menos [-]