Refinar búsqueda
Resultados 1-10 de 135
Mass and number concentration distribution of marine aerosol in the Western Pacific and the influence of continental transport Texto completo
2022
Ma, Yining | Zhang, Xiangguang | Xin, Jinyuan | Zhang, Wenyu | Wang, Zifa | Liu, Quan | Wu, Fangkun | Wang, Lili | Lyu, Yilong | Wang, Qinglu | Ma, Yongjing
We quantify for the first time marine aerosol properties and their differences in the offshore and remote ocean in the mid-latitude South Asian waters, low-latitude South Asian waters, and equatorial waters of the Western Pacific Ocean, based on shipboard cruise observations conducted by the Western Pacific Ocean Scientific Observation Network in winter 2018, and further investigate the effects of long-range transport of continental aerosols on the marine environment. During the overall observation period, the average number concentration of particle matter which aerodynamic diameters<2.5 μm (PM₂.₅N) was 35.1 ± 87.4 cm⁻³ and the mass concentration (PM₂.₅M) was 12.3 ± 9.1 μg/m³. The PM₂.₅N and PM₂.₅M during the continental air mass transport period were 7.2 and 1.3 times higher than those during the non-transport period (109.2 ± 169.3 cm⁻³, 15.9 ± 14.9 μg/m³), respectively. Excluding transport period, the average PM₂.₅N and PM₂.₅M are reduced by 120% and 7%. Coarse mode particle number concentration (PM₂.₅–₁₀N) and mass concentration (PM₂.₅–₁₀M) are not significantly influenced by continental air masses (only a reduction of 7% and 2%). The variation of marine aerosol concentrations in different latitudes zones is greatly influenced by continental aerosol transport. The offshore PM₂.₅M/PM₁₀M was 30%, 21%, and 22% in the mid-latitude sea of South Asia, a low-latitude sea of South Asia, and the equatorial sea, respectively. In comparison, in the remote ocean, the distribution ratio of PM₂.₅M/PM₁₀M tended to be steady (22%–23%), and the background characteristics of marine aerosols were clearly represented. The aerosol concentration decreases with the increase of wind speed during the transport period, and the wind speed reflects the scavenging effect on aerosol. In the non-transport period, the wind speed at the sea surface promotes the generation of marine aerosols, and the impact in wind speed is strongest in the PM₂.₅–PM₅ particle size range.
Mostrar más [+] Menos [-]Warming, temperature fluctuations and thermal evolution change the effects of microplastics at an environmentally relevant concentration Texto completo
2022
Chang, Mengjie | Zhang, Chao | Li, Mingyang | Dong, Junyu | Li, Changchao | Liu, Jian | Verheyen, Julie | Stoks, Robby
Microplastics are sometimes considered not harmful at environmentally relevant concentrations. Yet, such studies were conducted under standard thermal conditions and thereby ignored the impacts of higher mean temperatures (MT), and especially daily temperature fluctuations (DTF) under global warming. Moreover, an evolutionary perspective may further benefit the future risk assessment of microplastics under global warming. Here, we investigated the effects of two generations of exposure to an environmentally relevant concentration of polystyrene microplastics (5 μg L⁻¹) under six thermal conditions (2 MT × 3 DTF) on the life history, physiology, and behaviour of Daphnia magna. To assess the impact of thermal evolution we thereby compared Daphnia populations from high and low latitudes. At the standard ecotoxic thermal conditions (constant 20 °C) microplastics almost had no effect except for a slight reduction of the heartbeat rate. Yet, at the challenging thermal conditions (higher MT and/or DTF), microplastics affected each tested variable and caused an earlier maturation, a higher fecundity and intrinsic growth rate, a decreased heartbeat rate, and an increased swimming speed. These effects may be partly explained by hormesis and/or an adaptive response to stress in Daphnia. Moreover, exposure to microplastics at the higher mean temperature increased the fecundity and intrinsic growth rate of cold-adapted high-latitude Daphnia, but not of the warm-adapted low-latitude Daphnia, suggesting that thermal evolution in high-latitude Daphnia may buffer the effects of microplastics under future warming. Our results highlight the critical importance of DTF and thermal evolution for a more realistic risk assessment of microplastics under global warming.
Mostrar más [+] Menos [-]A generalized machine learning approach for dissolved oxygen estimation at multiple spatiotemporal scales using remote sensing Texto completo
2021
Guo, Hongwei | Huang, Jinhui Jeanne | Zhu, Xiaotong | Wang, Bo | Tian, Shang | Xu, Wang | Mai, Youquan
Dissolved oxygen (DO) is an effective indicator for water pollution. However, since DO is a non-optically active parameter and has little impact on the spectrum captured by satellite sensors, research on estimating DO by remote sensing at multiple spatiotemporal scales is limited. In this study, the support vector regression (SVR) models were developed and validated using the remote sensing reflectance derived from both Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data and synchronous DO measurements (N = 188) and water temperature of Lake Huron and three other inland waterbodies (N = 282) covering latitude between 22–45 °N. Using the developed models, spatial distributions of the annual and monthly DO variability since 1984 and the annual monthly DO variability since 2000 in Lake Huron were reconstructed for the first time. The impacts of five climate factors on long-term DO trends were analyzed. Results showed that the developed SVR-based models had good robustness and generalization (average R² = 0.91, root mean square percentage error = 2.65%, mean absolute percentage error = 4.21%), and performed better than random forest and multiple linear regression. The monthly DO estimates by Landsat and MODIS data were highly consistent (average R² = 0.88). From 1984 to 2019, the oxygen loss in Lake Huron was 6.56%. Air temperature, incident shortwave radiation flux density, and precipitation were the main climate factors affecting annual DO of Lake Huron. This study demonstrated that using SVR-based models, Landsat and MODIS data could be used for long-term DO retrieval at multiple spatial and temporal scales. As data-driven models, combining spectrum and water temperature as well as extending the training set to cover more DO conditions could effectively improve model robustness and generalization.
Mostrar más [+] Menos [-]Optimized approach for developing soil fugitive dust emission inventory in "2+26" Chinese cities Texto completo
2021
Li, Tingkun | Bi, Xiaohui | Dai, Qili | Wu, Jianhui | Zhang, Yufen | Feng, Yinchang
Based on the wind erosion equation and the use of moderate resolution imaging spectroradiometer (MODIS) satellite remote sensing data combined with parameter normalization processing, an optimized high spatial-temporal resolution soil fugitive dust (SFD) emission inventory compiling method was proposed in this study. The "2 + 26" cities in northern China, where heavy pollution frequently occurs, were used as a case study. Using the optimized method, we estimated that the PM₅₀, PM₁₀, and PM₂.₅ emissions from SFD of "2 + 26" cities in 2018 were 2,014,927, 1,007,463, and 151,120 tons, respectively. The dust emissions and emission factors of each city presented significant differences and were generally of a greater level in high-latitude areas (such as cities in Hebei Province) than in low-latitude areas (such as cities in Henan and Shandong Province). Moreover, with an increase in latitude, vegetation cover factors generally exhibit an upward trend, while temperature and rainfall exhibit a downward trend. The dust emissions in the different months showed significant differences. The total dust emission reached the highest level in "late winter–early spring" season (February to April), and the monthly emission accounted for 15–17% of the annual emissions. While in the "summer–autumn" season (July to November), it is the lowest level of the whole year, monthly emissions accounted for 3–5% of the annual emissions. The emission inventory method proposed in this study can provide a reference for dust emission assessment and further pollution prevention and control work.
Mostrar más [+] Menos [-]The effect of latitude and PM2.5 on spreading of SARS-CoV-2 in tropical and temperate zone countries Texto completo
2020
Chennakesavulu, K. | Reddy, G Ramanjaneya
The present work describes spreading of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) at the tropical and temperate zones which are explained based on insolation energy, Particulate Matter (PM₂.₅), latitude, temperature, humidity, Population Density (PD), Human Development Index (HDI) and Global Health Security Index (GHSI) parameters. In order to analyze the spreading of SARS-CoV-2 by statistical data based on the confirmed positive cases which are collected between December 31, 2019 to April 25, 2020. The present analysis reveals that the outbreak of SARS-CoV-2 in the major countries lie on the Equator is 78,509 cases, the countries lie on the Tropic of Cancer is 62,930 cases (excluding China) and the countries lie on the Tropic of Capricorn is 22,842 cases. The tropical countries, which comes between the Tropic of Cancer and Tropic of Capricorn is reported to be 1,77,877 cases. The temperate zone countries, which are above and below the tropical countries are reported to be 25,66,171 cases so, the pandemic analysis describes the correlation between latitude, temperate zones, PM₂.₅ and local environmental factors. Hence, the temperature plays a pivotal role in the spreading of coronavirus at below 20 °C. The spreading of SARS-CoV-2 cases in Northern and Southern Hemispheres has inverse order against absorption of insolated energy. In temperate zone countries, the concentration of PM₂.₅ at below 20 μg/m³ has higher spreading rate of SARS-CoV-2 cases. The effect of insolation energy and PM₂.₅, it is confirmed that the spreading of SARS-CoV-2 is explained by dumb-bell model and solid/liquid interface formation mechanism. The present meta-analysis also focuses on the impact of GHSI, HDI, PD and PM₂.₅ on spreading of SARS-CoV-2 cases.
Mostrar más [+] Menos [-]Microplastic abundance, distribution and composition in the mid-west Pacific Ocean Texto completo
2020
Wang, Sumin | Chen, Hongzhe | Zhou, Xiwu | Tian, Yongqing | Lin, Cai | Wang, Weili | Zhou, Kaiwen | Zhang, Yuanbiao | Lin, Hui
Microplastic pollution is widespread across most ocean basins around the world. Microplastics (MPs) are small plastic particles that have a significant impact on the marine environment. Various research on plastic pollution have been conducted in several regions. However, currently, there is limited data on the distribution and concentration of MPs in the mid-west Pacific Ocean. Therefore, this study we investigated the abundance, distribution, characteristics, and compositions of MPs in this region. Sea surface water samples collected from 18 stations showed a microplastic concentration range of 6028–95,335 pieces/km² and a mean concentration of 34,039 ± 25,101 pieces/km². Highest microplastic concentrations were observed in the seamount region of western Pacific. We observed a significant positive correlation between microplastic abundance and latitude across the study region. It was observed that microplastic concentrations decreased with increasing offshore distance at sites located on a 154° W transect. Fibres/filaments were the dominant microparticles observed in this study (57.4%), followed by fragments (18.3%). The dominant particle size range was 1–2.5 mm (35.1%), followed by 0.5–1 mm (28.5%), and the dominant particle colour was white (33.8%), followed by transparent (31.0%) and green (24.6%). The most common polymer identified by μ-Raman was polypropylene (39.1%), followed by polymethyl methacrylate (16.2%), polyethylene (14.1%) and polyethylene terephthalate (14.2%). The possible sources and pathways of microplastics in the study area were proposed based on the morphological and compositional characteristics of particles, their spatial distribution patterns, and shipboard current profiling (ADCP). Our study contributes to the further understanding of MPs in remote ocean areas.
Mostrar más [+] Menos [-]Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology Texto completo
2019
Verheyen, Julie | Stoks, Robby
There is increasing concern that climate change may make organisms more sensitive to chemical pollution. Many pesticides are indeed more toxic at higher mean temperatures. Yet, we know next to nothing about the effect of another key component of climate change, the increase of daily temperature fluctuations (DTFs), on pesticide toxicity. Therefore, we tested the effect of the pesticide chlorpyrifos under different levels of DTF (constant = 0 °C, low = 5 °C (current maximum level) and high = 10 °C (predicted maximum level under global warming)) around the same mean temperature on key life history and physiological traits of Ischnura elegans damselfly larvae in a common-garden experiment. At all levels of DTF, chlorpyrifos exposure was stressful: it reduced energy storage (fat content) and the activity of its target enzyme acetylcholinesterase, while it increased the activity of the detoxification enzyme cytochrome P450 monooxygenase. Notably, chlorpyrifos did not cause mortality or reduced growth rate at the constant temperature (0 °C DTF), yet increased mortality 6x and reduced growth rate with ca. 115% in the presence of DTF. This indicates that daily short-term exposures to higher temperatures can increase pesticide toxicity. Our data suggest that when 5 °C DTF will become more common in the studied high-latitude populations, this will increase the toxicity of CPF, and that a further increase from 5° DTF to 10 °C DTF may not result in a further increase of pesticide toxicity. Our results highlight the biological importance of including daily temperature fluctuations in ecological risk assessment of pesticides and as an extra dimension in the climate-induced toxicant sensitivity concept.
Mostrar más [+] Menos [-]Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy Texto completo
2018
Op de Beeck, Lin | Verheyen, Julie | Stoks, Robby
There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions. However, studies looking at the impact of biotic interactions on the toxicity of pesticides and vice versa under warming are very scarce. Therefore, we tested how warming (+4 °C), intraspecific competition (density treatment) and exposure to the pesticide chlorpyrifos, both in isolation and in combination, affected mortality, cannibalism, growth and heat tolerance of low- and high-latitude populations of the damselfly Ischnura elegans. Moreover, we addressed whether toxicant exposure, potentially in interaction with competition and warming, increased the frequency of autotomy, a widespread antipredator mechanism. Competition increased the toxicity of chlorpyrifos and made it become lethal. Cannibalism was not affected by chlorpyrifos but increased at high density and under warming. Chlorpyrifos reduced heat tolerance but only when competition was high. This is the first demonstration that a biotic interaction can be a major determinant of ‘toxicant-induced climate change sensitivity’. Competition enhanced the impact of chlorpyrifos under warming for high-latitude larvae, leading to an increase in autotomy which reduces fitness in the long term. This points to a novel pathway how transient pesticide pulses may cause delayed effects on populations in a warming world. Our results highlight that the interplay between biotic interactions and toxicants have a strong relevance for ecological risk assessment in a warming polluted world.
Mostrar más [+] Menos [-]Are unintentionally produced polychlorinated biphenyls the main source of polychlorinated biphenyl occurrence in soils? Texto completo
2018
Song, Shuai | Xue, Jianfang | Lü, Yonglong | Zhang, Hong | Wang, Chenchen | Cao, Xianghui | Li, Qifeng
The production of polychlorinated biphenyls (PCBs) has been banned globally for decades, but PCB concentrations in environmental media remain relatively high, especially in urban areas. Emissions estimates, studies of soil gradients between urban and rural areas, and quantitative identification of regional sources of PCBs in soils are necessary for understanding the environmental behavior of PCBs. In this study, regional PCB emissions were estimated at a resolution of 10 km × 10 km, and the spatial distribution of soil PCBs from urban to rural areas was studied along the Bohai and Yellow Sea regions. Compared with rural areas, mean PCB concentrations in urban soils (20.7 ng/g) were found to be higher, and concentrations decreased with distance from the city. Across both latitude and longitude directions, high PCB emissions in urban areas matched the distribution of total PCB concentrations in soils. The concentrations of the pollutants PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180 in soils originated from 5-year emissions, and accounted for 97%, 95%, 84%, 81%, 58%, 57%, and 27% of the total emissions, respectively. Unintentionally produced PCB (UP-PCB) emissions, which are mainly derived from cement (42%), pig iron (37%), crude steel (18%), and rolled steel (3%) industries, are the major contributors to PCBs in soils. Further identification of the sources and fates of PCBs requires a combination of field, laboratory, and modeling efforts.
Mostrar más [+] Menos [-]Microplastics in the Arctic: A case study with sub-surface water and fish samples off Northeast Greenland Texto completo
2018
Scotti Morgana, Silvia | Ghigliotti, Laura | Estévez-Calvar, Noelia | Stifanese, Roberto | Wieckzorek, Alina | Doyle, Tom | Christiansen, Jørgen S. | Faimali, Marco | Garaventa, Francesca
The Arctic is a unique and fragile ecosystem that needs to be preserved and protected. Despite its remoteness, plastic pollution has been documented in this region. In the coming years, it is likely to worsen since, with climate changes and the opening of new shipping routes, the human presence is going to increase in the whole area. Here, we investigated the presence of microplastics (MPs) in sub-surface water and in two mid-trophic level Arctic fishes collected off Northeast Greenland: the demersal bigeye sculpin, Triglops nybelini, and the pelagic polar cod, Boreogadus saida. Plastics debris were found in the water samples at a concentration of 2.4 items/m³ ±0.8 SD which is higher than in most seas at lower latitudes. Both fish species had eaten MPs with different proportion among the species, 34% for T. nybelini (n = 71) and 18% for B. saida (n = 85). The significant difference in the occurrence of MPs between the two species is likely a consequence of their feeding behavior and habitat. Polyethylene was the main plastic polymer for water samples (41%, n = 17) and polyester (34%, n = 156) for fish samples as analyzed by Fourier Transformed Infrared (FT-IR) spectroscopy. Our data underscore that the Arctic regions are turning into a hotspot for plastic pollution, and this calls urgently for precautionary measures.
Mostrar más [+] Menos [-]