Refinar búsqueda
Resultados 1-3 de 3
Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps
1999
Wenzel, W.W. | Jockwer, F. (Institute of Soil Science, Universitat fur Bodenkultur, Gregor-Mendel-Strasse 33, A-1180 Vienna (Austria))
Amendment Type and Dose Effects onto Coexisting Copper, Lead, and Nickel Ions Distribution in Soil
2018
Šljivić-Ivanović, Marija | Smičiklas, Ivana | Jović, Mihajlo | Dimović, Slavko | Onjia, Antonije
The use of soil additives for toxic metals chemical stabilization aims to decrease in situ the pollutants’ mobility and availability. In this study, the effectiveness of rinsed red mud (RBRM) and annealed animal bones (B400) was compared in terms of Cu, Pb and Ni stabilization in two contaminated soils with contrasting properties Dystric Cambisol (CM dy) and Rendzic Leptosol (LP rz). The mobility of metals in unamended soil samples (control) and samples amended with 1% and 5% of selected additives were compared using sequential extraction protocol. The relative content of metals in readily and potentially available fractions was higher in CM dy (62% Pb, 13% Cu, and 31% Ni in exchangeable fraction) than in LP rz (< 5% of Pb, Cu, Ni in exchangeable fraction). In CM dy, both additives have caused a decrease in metal mobility with an increase of their doses. The effect of 5% sorbent addition was most pronounced related to Pb immobilization, provoking decrease of exchangeable Pb content to < 10%. Furthermore, B400 addition has redistributed investigated metals from the exchangeable to the residual phase more effectively than RBRM, and its effect on metal mobility decreased in the order Pb > Cu > Ni. Amending of LP rz soil had limited effects with no apparent decrease in exchangeable metal content. The effects of soil type variation, the type of additive and the additive dose onto metal mobility were compared according to ANOVA results. The content of readily and potentially available forms of metals was found to be (i) significantly correlated with all investigated variables for Pb, (ii) significantly correlated with soil type for Cu, and (iii) not in significant correlation with selected variables for Ni. Complex impacts of soil properties and treatment conditions on the mobility of co-contaminants emphasize the need for an individual approach to each case of contamination.
Mostrar más [+] Menos [-]The influence of copper on tebuconazole sorption onto soils, humic substances, and ferrihydrite
2013
Čadková, Eva | Komárek, Michael | Kaliszová, Regina | Száková, Jiřina | Vaněk, Aleš | Bordas, François | Bollinger, Jean-Claude
The aim of this study is to investigate how the presence of Cu influences tebuconazole (Teb) sorption onto contrasting soil types and two important constituents of the soil sorption complex: hydrated Fe oxide and humic substances. Tebuconazole was used in commercial form and as an analytical-grade chemical at different Teb/Cu molar ratios (1:4, 1:1, 4:1, and Teb alone). Increased Cu concentrations had a positive effect on tebuconazole sorption onto most soils and humic substances, probably as a result of Cu−Teb tertiary complexes on the soil surfaces. Tebuconazole sorption increased in the following order of different Teb/Cu ratios 1:4 > 1:1 > 4:1 > without Cu addition, with the only exception for the Leptosol and ferrihydrite. The highest K f value was observed for humic substances followed by ferrihydrite, the Cambisol, the Arenosol, and the Leptosol. The sorption of analytical-grade tebuconazole onto all matrices was lower, but the addition of Cu supported again tebuconazole sorption. The Teb/Cu ratio with the highest Cu addition (1:4) exhibited the highest K f values in all matrices with the exception of ferrihydrite. The differences in tebuconazole sorption can be attributed to the additives present in the commercial product. This work proved the importance of soil characteristics and composition of the commercially available pesticides together with the presence of Cu on the behavior of tebuconazole in soils.
Mostrar más [+] Menos [-]