Refinar búsqueda
Resultados 1-10 de 87
Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms
2022
Zou, Mengyuan | Tian, Weijun | Chu, Meile | Gao, Huizi | Zhang, Dantong
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L⁻¹, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g⁻¹ at 35 °C with adsorbent dosage of 0.4 g L⁻¹, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g⁻¹, and 44.7 and 59.0 mg g⁻¹, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K⁺ and Ca²⁺ (0.02–0.1 mol L⁻¹). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Mostrar más [+] Menos [-]Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater
2022
Kumar, Vaidyanathan Vinoth | Venkataraman, Swethaa | Kumar, P Senthil | George, Jenet | Rajendran, Devi Sri | Shaji, Anna | Lawrence, Nicole | Saikia, Kongkona | Rathankumar, Abiram Karanam
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO₄ (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S⁻¹mM⁻¹ for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
Mostrar más [+] Menos [-]Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics
2022
Tophinke, Alissa H. | Joshi, Akshay | Baier, Urs | Hufenus, Rudolf | Mitrano, Denise M.
The inconsistency of available methods and the lack of harmonization in current microplastics (MPs) analysis in soils demand approaches for extraction and quantification which can be utilized across a wide variety of soil types. To enable robust and accurate assessment of extraction workflows, PET MPs with an inorganic tracer (Indium, 0.2% wt) were spiked into individual soil subgroups and standard soils with varying compositions. Due to the selectivity of the metal tracer, MPs recovery rates could be quickly and quantitatively assessed using ICP-MS. The evaluation of different methods specifically adapted to the soil properties were assessed by isolating MPs from complex soil matrices by systematically investigating specific subgroups (sand, silt, clay, non-lignified and lignified organic matter) before applying the workflow to standard soils. Removal of recalcitrant organic matter is one of the major hurdles in isolating MPs for further size and chemical characterization, requiring novel approaches to remove lignocellulosic structures. Therefore, a new biotechnological method (3-F-Ultra) was developed which mimics natural degradation processes occurring in aerobic (Fenton) and anaerobic fungi (CAZymes). Finally, a Nile Red staining protocol was developed to evaluate the suitability of the workflow for non-metal-doped MPs, which requires a filter with minimal background residues for further chemical identification, e.g. by μFTIR spectroscopy. Image analysis was performed using a Deep Learning tool, allowing for discrimination between the number of residues in bright-field and MPs counted in fluorescence mode to calculate a Filter Clearness Index (FCI). To validate the workflow, three well-characterized standard soils were analyzed applying the final method, with recoveries of 88% for MPs fragments and 74% for MPs fibers with an average FCI of 0.75. Collectively, this workflow improves our current understanding of how to adapt extraction protocols according to the target soil composition, allowing for improved MPs analysis in environmental sampling campaigns.
Mostrar más [+] Menos [-]Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review
2021
Ong, Ee Shen | Rabbani, Alija Haydar | Habashy, Mahmoud M. | Abdeldayem, Omar M. | Al-Sakkari, Eslam G. | Rene, Eldon R.
By the year 2050, it is estimated that the demand for palm oil is expected to reach an enormous amount of 240 Mt. With a huge demand in the future for palm oil, it is expected that oil palm by-products will rise with the increasing demand. This represents a golden opportunity for sustainable biohydrogen production using oil palm biomass and palm oil mill effluent (POME) as the renewable feedstock. Among the different biological methods for biohydrogen production, dark fermentation and photo-fermentation have been widely studied for their potential to produce biohydrogen by using various waste materials as feedstock, including POME and oil palm biomass. However, the complex structure of oil palm biomass and POME, such as the lignocellulosic composition, limits fermentable substrate available for conversion to biohydrogen. Therefore, proper pre-treatment and suitable process conditions are crucial for effective biohydrogen generation from these feedstocks. In this review, the characteristics of palm oil industrial waste, the process used for biohydrogen production using palm oil industrial waste, their pros and cons, and the influence of various factors have been discussed, as well as a comparison between studies in terms of types of reactors, pre-treatment strategies, the microbial culture used, and optimum operating condition have been presented. Through biological production, hydrogen production rates up to 52 L-H₂/L-medium/h and 6 L-H₂/L-medium/h for solid and liquid palm oil industrial waste, respectively, can be achieved. In short, the continuous supply of palm oil production by-product and relatively, the low cost of the biological method for hydrogen production indicates the potential source of renewable energy.
Mostrar más [+] Menos [-]Biomass utilization and production of biofuels from carbon neutral materials
2021
Srivastava, Rajesh K. | Shetti, Nagaraj P. | Reddy, Kakarla Raghava | Kwon, Eilhann E. | Nadagouda, Mallikarjuna N. | Aminabhavi, Tejraj M.
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world’s energy need by producing least amount of toxic gases (reduction up to 20–70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Mostrar más [+] Menos [-]Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions
2021
In this study, the co-pyrolysis of food waste with lignocellulosic biomass (wood bark) in a continuous-flow pyrolysis reactor was considered as an effective strategy for the clean disposal and value-added utilization of the biowaste. To achieve this aim, the effects of major co-pyrolysis parameters such as pyrolysis temperature, the flow rate of the pyrolysis medium (nitrogen (N₂) gas), and the blending ratio of food waste/wood bark on the yields, compositions, and properties of three-phase pyrolytic products (i.e., non-condensable gases, condensable compounds, and char) were investigated. The temperature and the food waste/wood bark ratio were found to affect the pyrolytic product yields, while the N₂ flow rate did not. More non-condensable gases and less char were produced at higher temperatures. For example, as the temperature was increased from 300 °C to 700 °C, the yield of non-condensable gases increased from 6.3 to 17.5 wt%, while the yield of char decreased from 63.6 to 30.6 wt% for the co-pyrolysis of food waste and wood bark at a weight ratio of 1:1. Both the highest yield of hydrogen (H₂) gas and the most significant suppression of the formation of phenolic and polycyclic aromatic hydrocarbon (PAH) compounds were achieved with a combination of food waste and wood bark at a weight ratio of 1:1 at 700 °C. The results suggest that the synergetic effect of food waste and lignocellulosic biomass during co-pyrolysis can be exploited to increase the H₂ yield while limiting the formation of phenolic compounds and PAH derivatives. This study has also proven the effectiveness of co-pyrolysis as a process for the valorization of biowaste that is produced by agriculture, forestry, and the food industry, while reducing the formation of harmful chemicals.
Mostrar más [+] Menos [-]Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood
2019
Sippula, Olli | Huttunen, Kati | Hokkinen, Jouni | Kärki, Sara | Suhonen, Heikki | Kajolinna, Tuula | Kortelainen, Miika | Karhunen, Tommi | Jalava, Pasi | Uski, Oskari | Yli-Pirilä, Pasi | Hirvonen, Maija-Riitta | Jokiniemi, Jorma
There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health. In this work, particulate emissions from a real-scale commercially operated FPBO boiler plant are characterized, including extensive physico-chemical and toxicological analyses. These are then compared to emission characteristics of heavy fuel-oil and wood fired boilers. Finally, the effects of the fuel choice on the emissions, their potential health effects and the requirements for flue gas cleaning in small-to medium-sized boiler units are discussed.The total suspended particulate matter and fine particulate matter (PM₁) concentrations in FPBO boiler flue gases before filtration were higher than in HFO boilers and lower or on a level similar to wood-fired grate boilers. FPBO particles consisted mainly of ash species and contained less polycyclic aromatic hydrocarbons (PAH) and heavy metals than had previously been measured from HFO combustion. This feature was clearly reflected in the toxicological properties of FPBO particle emissions, which showed less acute toxicity effects on the cell line than HFO combustion particles. The electrostatic precipitator used in the boiler plant efficiently removed flue gas particles of all sizes. Only minor differences in the toxicological properties of particles upstream and downstream of the electrostatic precipitator were observed, when the same particulate mass from both situations was given to the cells.
Mostrar más [+] Menos [-]Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw
2021
Liang, Jinsong | Zheng, Wenge | Zhang, Haibo | Zhang, Panyue | Cai, Yajing | Wang, Qingyan | Zhou, Zeyan | Ding, Yiran
Rumen liquid can effectively degrade lignocellulosic biomass, in which rumen microorganisms play an important role. In this study, transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw was explored. Results showed that rice straw was efficiently hydrolyzed and acidified, and the degradation efficiency of cellulose, hemicellulose and lignin reached 46.2%, 60.4%, and 12.9%, respectively. The concentration of soluble chemical oxygen demand (SCOD) and total volatile fatty acid (VFA) reached 12.9 and 8.04 g L⁻¹. The high-throughput sequencing results showed that structure of rumen bacterial community significantly changed in anaerobic digestion. The Shannon diversity index showed that rumen bacterial diversity decreased by 32.8% on the 5th day of anaerobic digestion. The relative abundance of Prevotella and Fibrobacter significantly increased, while Ruminococcus significantly decreased at the genus level. The Spearman correlation heatmap showed that pH and VFA were the critical factors affecting the rumen bacterial community structure. The function prediction found that rumen bacteria mainly functioned in carbohydrate transport and metabolism, which might contain a large number of lignocellulose degrading enzyme genes. These studies are conducive to the better application of rumen microorganisms in the degradation of lignocellulosic biomass.
Mostrar más [+] Menos [-]A potential lignocellulosic biomass based on banana waste for critical rare earths recovery from aqueous solutions
2020
Lapo, Byron | Bou, Jordi J. | Hoyo, Javier | Carrillo, Manuel | Peña, Karina | Tzanov, Tzanko | Sastre, Ana Maria
Rare earth elements (REE) present multiple applications in technological devices but also drawbacks (scarcity and water contaminant). The current study aims to valorise the banana wastes - banana rachis (BR), banana pseudo-stem (BPS) and banana peel (BP) as sustainable adsorbent materials for the recovery of REE (Nd³⁺, Eu³⁺, Y³⁺, Dy³⁺ and Tb³⁺). The adsorbent materials were characterized using analytical techniques such as: Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and scanning electron microscopy with energy dispersive X-ray probe. The adsorption performance and mechanisms were studied by pH dependence, equilibrium isotherms, kinetics, thermodynamics, ion-exchange and desorption evaluation. The results show good adsorption capacities for the three materials, highlighting BR that presents ∼100 mg/g for most of the REE. The adsorption process (100 mg REE/L) reaches the 60% uptake in 8 min and the equilibrium within 50 min. On the other hand, the thermodynamic study indicates that the adsorption is spontaneous and exothermic (ΔH° < 40 kJ/mol). The adsorption mechanism is based on the presence of carboxylic groups that induce electrostatic interactions and facilitate the surface nucleation of REE microcrystals coupled to an ion exchange process as well as the presence of other oxygen containing groups that establish weak intermolecular forces. The recovery of REE from the adsorbent (∼97%) is achieved using EDTA as desorbing solution. This research indicates that banana waste and particularly BR is a new and promising renewable bioresource to recover REE with high adsorption capacity and moderated processing cost.
Mostrar más [+] Menos [-]A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources
2020
Raksasat, Ratchaprapa | Lim, Jun Wei | Kiatkittipong, Worapon | Kiatkittipong, Kunlanan | Ho, Yeek Chia | Man-Kee Lam, | Font-Palma, Carolina | Mohd Zaid, Hayyiratul Fatimah | Cheng, Chin Kui
The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
Mostrar más [+] Menos [-]