Refinar búsqueda
Resultados 1-10 de 89
Reactivity of secondary phases in weathered limestone using isotopic tracers (D and 18O): the case study of the 'Tribunal Administratif' of Paris
2021
Gentaz, Lucile | Saheb, Mandana | Verney-Carron, Aurélie | Sessegolo, Loryelle | Chabas, Anne | Nuns, Nicolas | Remusat, Laurent | Gonzalez-Cano, Adriana | Fourdrin, Chloé | Mertz, Jean-Didier | Verney-Carron, Aurélie | Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) | Institut Michel Eugène Chevreul - FR 2638 (IMEC) ; Université d'Artois (UA)-Centrale Lille-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC) ; Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Géomatériaux et Environnement (LGE ) ; Université Gustave Eiffel | Laboratoire de recherche des monuments historiques (LRMH) ; Centre de Recherche sur la Conservation (CRC ) ; Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)
International audience | For a long time, limestone has been massively used in stone building and monuments because of its easy extraction and common presence in the landscape. On ancient monuments, mostly built in urban areas, it is exposed to urban-borne pollutants responsible for specific alteration mechanisms and weathering kinetics. Especially, the dissolution of calcite and the precipitation of new phases will affect the limestone pore network, modify the stones capillary properties, and influence the further alteration. In order to better understand these processes, an altered limestone sample from 'Tribunal Administratif' (TA) in Paris was studied. The main secondary phase was found to be syngenite, which can be explained by the location of the sample close to the soil, a potential source of K (fertilizers). This phase is more soluble than gypsum that is commonly found on altered limestone. In order to assess the reactivity of the system (limestone and new phases), oxygen and hydrogen isotopes were used to trace the transfer of water ((D2O)-O-18) and identify the location of the reactive areas (susceptible to alteration). For that, TA samples were exposed in a climatic chamber to relative humidity (RH) cycles (25% RH for 2.5 days and 85% RH for 4.5 days) for 2 months with a (D2O)-O-18 vapor to simulate alteration occurring in conditions sheltered from the rain. Results have shown that the water vapor easily circulates deep in the sample and reacts preferentially with syngenite the most reactive phase (compared with calcite and quartz). This phase could evolve in gypsum when exposed to an environment different from the one resulting in its formation.
Mostrar más [+] Menos [-]Reactivity of secondary phases in weathered limestone using isotopic tracers (D and 18O): the case study of the 'Tribunal Administratif' of Paris
2020
Gentaz, Lucile | Saheb, Mandana | Verney-Carron, Aurélie | Sessegolo, Loryelle | Chabas, Anne | Nuns, Nicolas | Remusat, Laurent | Gonzalez-Cano, Adriana | Fourdrin, Chloé | Mertz, Jean-Didier | Verney-Carron, Aurélie | Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) | Institut Michel Eugène Chevreul - FR 2638 (IMEC) ; Université d'Artois (UA)-Centrale Lille-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC) ; Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Géomatériaux et Environnement (LGE ) ; Université Gustave Eiffel | Laboratoire de recherche des monuments historiques (LRMH) ; Centre de Recherche sur la Conservation (CRC ) ; Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)
International audience | For a long time, limestone has been massively used in stone building and monuments because of its easy extraction and common presence in the landscape. On ancient monuments, mostly built in urban areas, it is exposed to urban-borne pollutants responsible for specific alteration mechanisms and weathering kinetics. Especially, the dissolution of calcite and the precipitation of new phases will affect the limestone pore network, modify the stones capillary properties, and influence the further alteration. In order to better understand these processes, an altered limestone sample from 'Tribunal Administratif' (TA) in Paris was studied. The main secondary phase was found to be syngenite, which can be explained by the location of the sample close to the soil, a potential source of K (fertilizers). This phase is more soluble than gypsum that is commonly found on altered limestone. In order to assess the reactivity of the system (limestone and new phases), oxygen and hydrogen isotopes were used to trace the transfer of water ((D2O)-O-18) and identify the location of the reactive areas (susceptible to alteration). For that, TA samples were exposed in a climatic chamber to relative humidity (RH) cycles (25% RH for 2.5 days and 85% RH for 4.5 days) for 2 months with a (D2O)-O-18 vapor to simulate alteration occurring in conditions sheltered from the rain. Results have shown that the water vapor easily circulates deep in the sample and reacts preferentially with syngenite the most reactive phase (compared with calcite and quartz). This phase could evolve in gypsum when exposed to an environment different from the one resulting in its formation.
Mostrar más [+] Menos [-]Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media
2020
Lyu, Xueyan | Liu, Xing | Sun, Yuanyuan | Gao, Bin | Ji, Rong | Wu, Jichun | Xue, Yuqun
Understanding the subsurface transport of perfluorooctanoic acid (PFOA) is of considerable interest for evaluating its potential risks to humans and ecosystems. In this study, packed-column experiments were conducted to examine the influence of surface roughness on PFOA transport in unsaturated glass beads, quartz sand and limestone porous media. Results showed decreasing moisture content significantly increased the air-water interfacial adsorption of PFOA and led to greater retardation in all three types of porous media. Particularly, rougher surface (limestone > quartz sand > glass beads) and smaller grain size (i.e. a larger solid specific surface area, SSSA) significantly enhanced PFOA retardation under unsaturated conditions. These results were further supported by bubble column experiments and SSSA analysis of porous media, which demonstrate that except for the factors affecting PFOA transport in solid-water interface (e.g. surface charge and chemical heterogeneity), the greater retardation of PFOA during transport is attributed to the larger air-water interfacial areas associated with rougher surface and smaller grain size and hence greater interfacial adsorption of PFOA. Our results indicated the importance of surface roughness on the retention and transport of PFOA in the unsaturated zone.
Mostrar más [+] Menos [-]Spectroscopic investigation of Cu2+, Pb2+ and Cd2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms
2019
Zhang, Zhen | He, Shuran | Zhang, Yulong | Zhang, Kun | Wang, Jinjin | Jing, Ran | Yang, Xingjian | Hu, Zheng | Lin, Xiaojing | Li, Yongtao
In the present study, the competitive adsorption of Cu²⁺, Pb²⁺, and Cd²⁺ by a novel natural adsorbent (i.e., argillaceous limestone) modified with chitosan (C-AL) was investigated. The results demonstrated that both intraparticle diffusion and chemisorption marked significant contributions to the Cu²⁺ adsorption process by both raw argillaceous limestone (R-AL) and C-AL in mono-metal adsorption systems. Antagonism was found to be the predominant competitive effect for Cu²⁺, Pb²⁺ and Cd²⁺ adsorptions by C-AL in the multi-metal adsorption system. The three-dimensional simulation and FTIR analysis revealed that the presence of Cu²⁺ suppressed Pb²⁺ and Cd²⁺ adsorptions, while the effect of Cd²⁺ on Cu²⁺ and Pb²⁺ adsorptions was insignificant. The spectroscopic analyses evidenced that amide groups in C-AL played a crucial role in metal adsorption. The preferential adsorptions of Pb²⁺ > Cu²⁺ > Cd²⁺ were likely due to the different affinities of the metals to the lone pair of electrons on the N atom from the amide groups and/or the O atoms from the –OH and -COO⁻ groups on C-AL. The interactions between C-AL and metal ions and between various metal species influenced their competitive adsorption behaviors. C-AL exhibited a superior metal adsorption capacity in comparison with that the capacities of other natural adsorbents reported during the last decade, suggesting its potential practical applications.
Mostrar más [+] Menos [-]A potential source for PM2.5: Analysis of fine particle generation mechanism in Wet Flue Gas Desulfurization System by modeling drying and breakage of slurry droplet
2019
Jiang, Binfan | Xie, Yulei | Xia, Dehong | Liu, Xiangjun
Aerosol particulate matter with dynamic diameter smaller than 2.5 μm (PM₂.₅) is the main cause for haze pollution in China. As a dominant precursor of PM₂.₅, SO₂ emitted from industrial process is now strictly controlled by using limestone/gypsum Wet Flue Gas Desulfurization (WFGD) system in China. However, a phenomenon that fine particle derived from WFGD is recently addressed, and is suggested to be a potential source of primary PM₂.₅. Herein, a first investigation into the particle generation mechanism in WFGD system is conducted with a novel droplet (containing particles) drying and breakage model. The proposed model considers a random and porous crust instead of the previous regular crust assumption, and is verified by comparing the modeling results with measurements. An orthogonal test with four factors and three levels is carried out through modeling calculation, and flue gas temperature (Tg) in the inlet is found to be a governing parameter for PM₂.₅ yields in WFGD. With Tg in range of 120–160 °C, PM₂.₅ yields in desulfurizing tower can reach a maximum value at ∼2 × 10⁸ cm⁻³ under typical WFGD condition. To avoid this situation and reduce the PM₂.₅ generation, Tg is suggested to be lower than 120 °C. Additionally, a new insight of the elimination effect of gas-gas heater (GGH) on “gypsum rain” in WFGD system is provided.
Mostrar más [+] Menos [-]Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler
2018
Fu, Biao | Liu, Guijian | Sun, Mei | Hower, James C. | Mian, Md Manik | Wu, Dun | Wang, Ruwei | Hu, Guangqing
Emission of hazardous trace elements (HTEs) from energy production is receiving much attention due to concerns about the toxicity to the ecosystem and human health. This study presented new field measurement data on the HTEs partitioning behavior and size-segregated elemental compositions of gaseous particular matter (PM) generated from a commercial circulating fluidized bed (CFB) power plant. Mineralogical and morphological characteristics of combustion ash and PM2.5 (particle diameter less than 2.5 μm) were determined by X-ray diffractometer (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). Functional groups alteration during CFB combustion was characterized by Fourier transform infrared spectroscopy (FTIR). The presence of aliphatic hydrogen at 2910 cm−1 and 2847 cm−1 in the PM2.5 suggested that the aliphatic carbon-rich volatiles were absorbed on the fine particles with large surface area. Fine fly ash (PM2.5) occurred as irregular glass particles or/and as unburned carbon. The typical irregular particles were mainly composed of Al-Si-Ca or Al-Si-Fe phases. The enrichment behavior of HTEs was determined for the airborne size-segregated particular matter. Elemental occurrences, combustion temperature, unburnt carbon, and limestone additives during CFB combustion were critical in the transformation behavior of HTEs. The total potentially mobile pollutants that exit the CFB power plant every year were estimated as follows: 0.22 tons of Cr, 0.12 tons of Co, 0.73 tons of Ni, 0.04 tons of As, 0.07 tons of Se, 3.95 kg of Cd, and 3.34 kg of Sb.
Mostrar más [+] Menos [-]Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field
2017
ur Rehman, Muhammad Zia | Khalid, Hinnan | Akmal, Fatima | Ali, Shafaqat | Rizwan, Muhammad | Qayyum, Muhammad Farooq | Iqbal, Muhammad | Khalid, Muhammad Usman | Azhar, Muḥammad
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
Mostrar más [+] Menos [-]High resolution estimates of the corrosion risk for cultural heritage in Italy
2017
De Marco, Alessandra | Screpanti, Augusto | Mircea, Mihaela | Piersanti, Antonio | Proietti, Chiara | Fornasier, M Francesca
Air pollution plays a pivotal role in the deterioration of many materials used in buildings and cultural monuments causing an inestimable damage. This study aims to estimate the impacts of air pollution (SO2, HNO3, O3, PM10) and meteorological conditions (temperature, precipitation, relative humidity) on limestone, copper and bronze based on high resolution air quality data-base produced with AMS-MINNI modelling system over the Italian territory over the time period 2003–2010. A comparison between high resolution data (AMS-MINNI grid, 4 × 4 km) and low resolution data (EMEP grid, 50 × 50 km) has been performed. Our results pointed out that the corrosion levels for limestone, copper and bronze are decreased in Italy from 2003 to 2010 in relation to decrease of pollutant concentrations. However, some problem related to air pollution persists especially in Northern and Southern Italy. In particular, PM10 and HNO3 are considered the main responsible for limestone corrosion. Moreover, the high resolution data (AMS-MINNI) allowed the identification of risk areas that are not visible with the low resolution data (EMEP modelling system) in all considered years and, especially, in the limestone case. Consequently, high resolution air quality simulations are suitable to provide concrete benefits in providing information for national effective policy against corrosion risk for cultural heritage, also in the context of climate changes that are affecting strongly Mediterranean basin.
Mostrar más [+] Menos [-]Application of encapsulation (pH-sensitive polymer and phosphate buffer macrocapsules): A novel approach to remediation of acidic ground water
2009
Aelion, C Marjorie | Davis, Harley T. | Flora, Joseph R.V. | Kirtland, Brian C. | Amidon, Mark B.
Macrocapsules, composed of a pH-sensitive polymer and phosphate buffer, offer a novel remediation alternative for acidic ground waters. To test their potential effectiveness, laboratory experiments were carried out followed by a field trial within a coal pile runoff (CPR) acidic contaminant plume. Results of traditional limestone and macrocapsule treatments were compared in both laboratory and field experiments. Macrocapsules were more effective than limestone as a passive treatment for raising pH in well water from 2.5 to 6 in both laboratory and field experiments. The limestone treatments had limited impact on pH, only increasing pH as high as 3.3, and armoring by iron was evident in the field trial. Aluminum, iron and sulfate concentrations remained relatively constant throughout the experiments, but phosphate increased (0.15-32 mg/L), indicating macrocapsule release. This research confirmed that macrocapsules may be an effective alternative to limestone to treat highly acidic ground water. Encapsulated phosphate buffer macrocapsules were more effective than limestone for passive treatment of acidic coal pile runoff (CPR) contaminated ground water, increasing pH from 2.5 to 6 in laboratory and field experiments.
Mostrar más [+] Menos [-]Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain
2021
Fang, Xu | Wang, Jing | Chen, Hongping | Christl, Iso | Wang, Peng | Kretzschmar, Ruben | Zhao, Fang-Jie
Representing the staple crop for half of the world population, rice can accumulate high levels of cadmium (Cd) in its grain, posing concerns on food safety. Different soil amendments have been proposed to decrease Cd accumulation in rice grain by either decreasing soil Cd availability, introducing competitive ions on Cd uptake, or down-regulating the expression of transporters for Cd uptake. However, the effectiveness of soil amendments applied alone or in combinations needs to be tested under field conditions. Here, we present results of field trials with two rice cultivars differing in Cd accumulation grown at three field sites in southern China in two years, to investigate the effects of two Mn-containing soil amendments (MnO₂, Mn-loaded biochar (MB)), Si fertilizer (Si), limestone, and K₂SO₄, as well as interactions among MnO₂, Si, and limestone on decreasing Cd accumulation in rice grain. We found that single applications of MnO₂ or MB to acidic soils low in Mn decreased grain Cd concentrations by 44–53 % or 78–82 %, respectively, over two years without decrease in performance. These effects were comparable to or greater than those induced by limestone liming alone (45–62 %). Strong interactions between MnO₂ and limestone resulting from their influence on soil extractable Cd and Mn led to non-additive effects on lowering grain Cd. MB addition minimized grain Cd concentrations, primarily by increasing extractable and dissolved Mn concentrations, but also by decreasing Cd extractability in soil. In comparison, Si and K₂SO₄ amendments affected grain Cd levels only weakly. We conclude that the amendments that decrease labile Cd and increase labile Mn in soils are most effective at reducing Cd accumulation in rice grain, thus contributing to food safety.
Mostrar más [+] Menos [-]