Refinar búsqueda
Resultados 1-10 de 29
Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China Texto completo
2022
Zhang, Donghuan | Ren, Hong | Hu, Wei | Wu, Libin | Ren, Lujie | Deng, Junjun | Zhang, Qiang | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Lipids are important biogenic markers to indicate the sources and chemical process of aerosol particles in the atmosphere. To better understand the influences of biogenic and anthropogenic sources on forest aerosols, total suspended particles (TSP) were collected at Mt. Changbai, Shennongjia, and Xishuangbanna that are located at different climatic zones in northeastern, central and southwestern China. n-Alkanes, fatty acids and n-alcohols were detected in the forest aerosols based on gas chromatography-mass spectrometry. The total concentrations of aliphatic compounds ranged from 15.3 ng m⁻³ to 566 ng m⁻³, and fatty acids were the most abundant (44–95%) followed by n-alkanes and n-alcohols. Low molecular weight- (LFAs) and unsaturated fatty acids (UnFAs) showed diurnal variation with higher concentrations during the nighttime in summer, indicating the potential impact from microbial activities on forest aerosols. The differences of oleic acid (C₁₈:₁) and linoleic acid (C₁₈:₂) concentrations between daytime and nighttime increased at lower latitude, indicating more intense photochemical degradation occurred at lower latitude regions. High levels of n-alkanes during daytime in summer with higher values of carbon preference indexes, combining the strong odd carbon number predominance with a maximum at C₂₇ or C₂₉, implied the high contributions of biogenic sources, e.g., higher plant waxes. In contrast, higher concentrations of low molecular weight n-alkanes were detected in winter forest aerosols. Levoglucosan showed a positive correlation (R² > 0.57) with high- and low molecular weight aliphatic compounds in Mt. Changbai, but such a correlation was not observed in Shennongjia and Xishuangbanna. These results suggest the significant influence of biomass burning in Mt. Changbai, and fossil fuel combustion might be another important anthropogenic source of forest aerosols. This study adds useful information to the current understanding of forest organic aerosols at different geographical locations in China.
Mostrar más [+] Menos [-]Ecotoxicological effects of erythromycin on a multispecies biofilm model, revealed by metagenomic and metabolomic approaches Texto completo
2021
Pu, Yang | Pan, Jie | Yao, Yuan | Ngan, Wing Yui | Yang, Yang | Li, Meng | Habimana, Olivier
The presence of antibiotics such as erythromycin, even in trace amounts, has long been acknowledged for negatively impacting ecosystems in freshwater environments. Although many studies have focused on the impact of antibiotic pollution at a macroecological level, the impact of erythromycin on microecosystems, such as freshwater biofilms, is still not fully understood. This knowledge gap may be attributed to the lack of robust multispecies biofilm models for fundamental investigations. Here, we used a lab-cultured multispecies biofilm model to elucidate the holistic response of a microbial community to erythromycin exposure using metagenomic and metabolomic approaches. Metagenomic analyses revealed that biofilm microbial diversity did not alter following erythromycin exposure. Notably, certain predicted metabolic pathways such as cell–cell communication pathways, amino acid metabolism, and peptidoglycan biosynthesis, mainly by the phyla Actinobacteria, Alpha/Beta-proteobacteria, Bacteroidetes, and Verrucomicrobia, were found to be involved in the maintenance of homeostasis-like balance in the freshwater biofilm. Further untargeted metabolomics data highlighted changes in lipid metabolism and linoleic acid metabolism and their related molecules as a direct consequence of erythromycin exposure. Overall, the study presented a unique picture of how multispecies biofilms respond to single environmental stress exposures. Moreover, the study demonstrated the feasibility of using lab simulated multispecies biofilms for investigating their interaction and reactivity of specific bioactive compounds or pollutants at a fundamental level.
Mostrar más [+] Menos [-]Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae Texto completo
2020
Guschina, Irina A. | Hayes, Anthony J. | Ormerod, Stephen J.
Despite growing concern about the occurrence of microplastics in aquatic ecosystems there is only rudimentary understanding of the pathways through which any adverse effects might occur. Here, we assess the effects of polystyrene microplastics (PS-MPs; <70 μm) on a common and widespread algal species, Chlorella sorokiniana. We used laboratory exposure to test the hypothesis that the lipids and fatty acids (FAs) are important molecules in the response reactions of algae to this pollutant. Cultivation with PS-MPs systematically reduced the concentration of essential linoleic acid (ALA, C18:3n-3) in C. sorokiniana, concomitantly increasing oleic acid (C18:1n-9). Among the storage triacylglycerols, palmitoleic and oleic acids increased at the expenses of two essential fatty acids, linoleic (LIN, C18:2n-6) and ALA, while PS-MPs had even more pronounced effects on the fatty acid and hydrocarbon composition of waxes and steryl esters. The FA composition of two major chloroplast galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were affected implying changes in the conformational structure of photosynthetic complexes in ways that can impair the photosynthesis. These data reveal how exposure to polystyrene microplastics can modify the concentrations of lipid molecules that are important intrinsically in cell membranes, and hence the lipid bilayers that could form an important barrier between algal cellular compartments and plastics in the aquatic environment. Changes in lipid synthesis and fatty acid composition in algae could also have repercussions for food quality, growth and stressor resistance in primary consumers. We advocate further studies of microplastics effects on the lipid composition of primary producers, and of their potential propagation through aquatic food webs.
Mostrar más [+] Menos [-]In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue Texto completo
2019
Roszkowska, Anna | Yu, Miao | Bessonneau, Vincent | Ings, Jennifer | McMaster, Mark | Smith, Richard | Bragg, Leslie | Servos, Mark | Pawliszyn, Janusz
Various environmental studies have employed the biomonitoring of fish in their aquatic ecosystems in order to identify potential metabolic responses to the exposome. In this study, we applied in vivo solid-phase microextraction (SPME) to perform non-lethal sampling on the muscle tissue of living fish to extract toxicants and various endogenous metabolites. Sixty white suckers (Catastomus commersonii) were sampled from sites upstream, adjacent, and downstream from the oil sands development region of the Athabasca River (Alberta, Canada) in order to track their biochemical responses to potential contaminants. In vivo SPME sampling facilitated the extraction of a wide range of endogenous metabolites, mainly related to lipid metabolism. The obtained results revealed significant changes in the levels of numerous metabolites, including eicosanoids, linoleic acids, and fat-soluble vitamins, in fish sampled in different areas of the river, thus demonstrating SPME's applicability for the direct monitoring of exposure to different environmental toxicants. In addition, several classes of toxins, including petroleum-related compounds, that can cause serious physiological impairment were tentatively identified in the extracts. In vivo SPME, combined with the analysis of contaminants and endogenous metabolites, provided important information about the exposome; as such, this approach represents a potentially powerful and non-lethal tool for identifying the mechanisms that produce altered metabolic pathways in response to the mixtures of different environmental pollutants.
Mostrar más [+] Menos [-]Dispersal and assimilation of an aquaculture waste subsidy in a low productivity coastal environment Texto completo
2017
White, C.A. | Nichols, P.D. | Ross, D.J. | Dempster, T.
To understand dispersal and assimilation of aquaculture waste subsidies in a naturally low-productivity environment, we applied a novel, rapid transmethylation technique to analyse sediment and biota fatty acid composition. This technique was initially validated at Atlantic salmon farms in Macquarie Harbour, Australia, where sediments were collected at farm and control locations. Subsequently, sediment, benthic polychaete and zooplankton were sampled at sites 0, 50, 250, 500 and 1000m distant from multiple cages. Results demonstrated an acute deposition zone up to 50m from cages and a diffuse zone extending 500m from cages. Changes in sediment concentration of linoleic acid, oleic acid and total fatty acids were effective tracers of farm deposition. Bacterial biomarkers indicated that aquaculture waste stimulates bacterial productivity in sediments, with elevated biomarker concentrations also detected in benthic polychaetes. Overall, fatty acid analysis was a sensitive technique to characterize the benthic footprint of aquaculture influence.
Mostrar más [+] Menos [-]Lemna minor membranes affected by adjuvants
1993
Caux, P.Y. | Weinberger, P. (Environment Canada, Eco-Health Branch, Ecosystems Sciences and Evaluations Directorate, Ottawa, Ont. K1A 0H3 (Canada))
Temperature and extraction methods effects on yields, fatty acids, and tocopherols of prickly pear (Opuntia ficus-indica L.) seed oil of eastern region of Morocco Texto completo
2022
Kadda, Salma | Belabed, Abdelmadjid | Loukili, El Hassania | Hammouti, Belkheir | Fadlaoui, Soufiane
The present study focuses on the effect of temperature and extraction methods on the yields, chemical quality, fatty acids, and tocopherols of the oil extracted from the seeds of Opuntia ficus-indica, collected in the eastern region of Morocco. Our results revealed the effect of temperature that when we increase the temperature used, the yields also increase; the results also showed that this high temperature does not affect the physicochemical properties, fatty acids, and tocopherols. Thus, the results of this study revealed that the prickly pear is a rich source of oil; the obtained oil yields varied from 12.49%±0.09 for mechanical extraction, 11.46±0.10 for chemical extraction, and 10.52%±0.09 for maceration. The main fatty acids founded in Opuntia ficus-indica are linoleic acid 75.80%±0.10 (chemical), 74.07%±0.14 (maceration), and 71.59%±0.14 (mechanical) and palmitic acid 17.32%±0.02 (chemical), 22.419%±0.06 (maceration), and 26.58%±0.00 (mechanical); prickly pear oil could be classified as a linoleic acid. The physicochemical properties of Opuntia ficus-indica seed oils such as acid index mgKOH/g oil (4,376±0.10, 5.854±0.03, 5.667±0.07), saponification value mgKOH/g oil (181.12 ±0.18, 183.77±1.23, 179.08±3.45), and peroxide value 20milieq/Kg (5.75±0.08, 6±0.06, 5.97±0.04) for mechanical, chemical, and maceration extraction, respectively, density, and refractive index were all found to be in good accordance with quality criteria for both pure and fresh oils. Among the tocopherols found, a high value of γ-tocopherol was detected in mechanical extraction with 502.04±0.76 mg/kg, followed by chemical extraction and maceration with 430.12±0.61mg/kg and 315.47±0.96 mg/kg, respectively.
Mostrar más [+] Menos [-]Nutritive value of quinoa (Chenopodium quinoa) as a feed for ruminants: in sacco degradability and in vitro gas production Texto completo
2022
Ebeid, Hossam Mahrous | Kholif, Ahmed Eid | El-Bordeny, Nasr | Chrenkova, Maria | Mlynekova, Zuzana | Hansen, Hanne Helene
Replacement of conventional feedstuffs with inexpensive and non-conventional ingredients such as quinoa may improve animal performance and the quality of their products. Quinoa supplementation is believed to have a good nutritive value as a ruminant feed, but evidence is scarce. The present experiment aimed to evaluate the nutritive value of whole, dried quinoa plant (Chenopodium quinoa) as a feed for ruminants. In the first experiment, the in sacco technique was used to evaluate nutrient disappearance and fermentation kinetics of quinoa. In the second experiment, the in vitro gas production technique was used to evaluate diets with substitution of clover hay with quinoa at 0 (Q0), 15 (Q15), 30 (Q30), and 45% (Q45) of the diets. Proximate analysis showed that quinoa contained about 18.6% crude protein (CP) with oleic acid, arachic acid, linoleic acid, and palmitic acid as the major fatty acids. The in sacco degradability showed that the “a” fraction of dry matter (DM) was low, while the fraction “b” was high for DM and CP. Replacing clover hay with quinoa did not affect gas or methane production; however, Q30 treatment quadratically increased (P < 0.05) its production. It is concluded that quinoa can be used as a feed for ruminants and can replace clover hay up to 45% in the diet.
Mostrar más [+] Menos [-]Plasma metabolomic profiling in workers with noise-induced hearing loss: a pilot study Texto completo
2021
Miao, Long | Wang, Boshen | Zhang, Juan | Yin, Lihong | Pu, Yuepu
Noise-induced hearing loss (NIHL) remains a leading occupational related disease and is a serious public health problem. Hence, the identification of potential biomarkers for NIHL prevention and diagnosis has become an urgent work. To discover potential metabolic biomarkers of NIHL, plasma metabolomics analysis in 62 NIHL patients and 62 normal hearing controls was performed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF MS). Orthogonal partial least square-discriminant analysis (OPLS-DA) model was applied to distinguish metabolite profile alterations in plasma samples between the two groups. The metabolites with a variable importance of projection (VIP) value > 1 and P value < 0.05 were considered to be potential metabolic biomarkers. KEGG database was performed to explore the involved pathways of potential biomarkers. Three autophagy-related genes (PI3K, AKT, and ATG5) were selected for further verification, and mRNA levels were detected using RT-qPCR analysis. Twenty plasma metabolites with VIP > 1 and P < 0.05 were significantly altered between the two groups. Totally, seven metabolic pathways involving the glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, autophagy pathway, choline metabolism, the alpha-linolenic acid metabolism and linoleic acid metabolism, and retrograde endocannabinoid pathway were significantly related to NIHL. Furthermore, verification by RT-qPCR suggested that the mRNA expression levels of PI3K and AKT along with ATG5 were significantly lower in the NIHL patients compared with controls. In summary, the present study provides the first evidence that the identified aberrantly altered metabolites may be the potentially valuable biomarkers of NIHL for occupational noise-exposed workers. Autophagy signal pathway may be involved in the occurrence and development of NIHL. Moreover, this present study may be helpful to further better understand the metabolic changes in NIHL and be helpful for the understanding of pathogenic mechanism.
Mostrar más [+] Menos [-]Towards sustainable management of tomato pomace through the recovery of valuable compounds and sequential production of low-cost biosorbent Texto completo
2020
Azabou, Samia | Louati, Ibtihel | Ben Taheur, Fadia | Nasri, Moncef | Mechichi, Tahar
The present study focused on the full valorization of the tomato by-product, also known as tomato pomace consisting mainly of tomato peels and tomato seeds, by recovering natural antioxidants and edible oil, and subsequently reutilizing the leftover solid residues for the production of low-cost biosorbent. The tomato peel extract recovered using ethanol as food-grade solvent contained high phenol and flavonoid contents (199.35 ± 0.35-mg gallic acid equivalents (GAE)/g and 102.10 ± 0.03-mg quercetin equivalent (QE)/g, respectively). Even its lower content of lycopene (3.67 ± 0.04 mg/100 g), tomato peel extract showed potent antioxidant activity and can be therefore used as natural antioxidants either for food or cosmetic applications. High nutritional quality edible oil (17.15%) was extracted from tomato seeds and showed richness in unsaturated fatty acids (74.62%), with linoleic acid being the most abundant polyunsaturated fatty acid (49.70%). After recovery of these valuable compounds, the extraction solid leftovers were used to produce low-cost biosorbent tested for dye removal. Results showed that the highest biosorption yields were increasingly attributed to the acidic, direct, anthraquinone, then reactive dyes. Overall, the obtained results strongly support the complete utilization of tomato pomace for the recovery of valuable compounds and the sequential production of low-cost biosorbent.
Mostrar más [+] Menos [-]