Refinar búsqueda
Resultados 1-10 de 98
Urinary bisphenol concentrations and its association with metabolic disorders in the US and Korean populations Texto completo
2022
Choi, Ji Yoon | Lee, Jiyun | Huh, Da-An | Moon, Kyong Whan
Bisphenol A (BPA) is a representative endocrine disrupting compound used in a vast array of consumer products, and are being frequently substituted by its analogues, bisphenol S (BPS) and bisphenol F (BPF). We aimed to examine the association between urinary bisphenol levels with obesity and lipid profiles in the general population to comprehensively evaluate its potential of metabolic disturbance. A representative sample of 1046 US adults from the National Health and Nutrition Examination Survey (2013–2016) and 3268 Korean adults from the Korean National Environmental Health Survey (2015–2017) was analyzed. We examined the exposure levels of bisphenols and determined their associations with obesity, high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels, and hypercholesterolemia prevalence through multiple linear, and binary/ordinal logistic regression models. In both populations, high BPA levels (lowest tertile vs. 2nd, 3rd tertiles) showed corresponding associations with lipid profile and obesity. BPA levels were associated with decreased HDL-C levels (Q3: β = −0.053, p = 0.08 (US); Q2: β = −0.030, p-0.03), increased TG levels (Q3: β = 0.121, p = 0.029 (US); Q3: β = 0.089, p = 0.021, and higher odds for obesity (Q3: OR = 1.58, 95% CI: 1.06, 2.35 (US); Q3: OR = 1.41, 95% CI: 1.11, 1.78). Higher BPS levels were positively associated with obesity status, especially in US men (Q2: OR = 1.84, 95% CI: 1.15, 2.96) and Korean women (Q3: OR = 1.27, 95% CI: 0.99, 1.64). A significant decrease in HDL-C (Q3: β = −0.088, p = 0.01) and elevated odds for obesity at higher BPF levels (Q3: OR = 1.60, 95% CI: 1.00, 2.56) was observed in US women. The findings of our study indicate that BPA and its analogues, BPS and BPF, are associated with lipid metabolism disorders in addition to obesity in adults. Given the increase in exposure to BPA alternatives, continuous biomonitoring, and further investigation of their health effects through prospective cohort studies are warranted.
Mostrar más [+] Menos [-]Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances Texto completo
2022
Luo, Zhili | Yu, Zhenyang | Yin, Daqiang
Environmental obesogens contributed significantly to the obesity prevalence. Recently, antibiotics joined the list of environmental obesogens, while the underlying mechanisms remained to be explored. In the present study, effects of erythromycin (ERY), one widely used macrolide antibiotic, were measured on C. elegans to investigate the obesogenic mechanism. Results showed that ERY at 0.1 μg/L significantly increased the fat content by 17.4% more than the control and also stimulated triacylglycerol (TAG) levels by 25.7% more than the control. Regarding the obesogenic mechanisms, ERY provoked over-eating by stimulation on the pharyngeal pumping and reduction on the satiety quiescence percentage and duration. Such effects were resulted from stimulation on the neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh). The nervous responses involved the up-regulation of Gsα (e.g., ser-7, gsa-1, acy-1 and kin-2) signaling pathway and the down-regulation of TGFβ (daf-7) but not via cGMP-dependent regulations (e.g., egl-4). Moreover, ERY stimulated the activities of fatty acid synthase (FAS) and glycerol-3-phosphateacyl transferases (GPAT) that catalyze lipogenesis, while ERY inhibited those of acyl-CoA synthetase (ACS), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) that catalyze lipolysis. The unbalance between lipogenesis and lipolysis resulted in the fat accumulation which was consistent with up-regulation on mgl-1 and mgl-3 which are the down-steam of TGFβ regulation. Such consistence supported the close connection between nervous regulation and lipid metabolism. In addition, ERY also disturbed insulin which connects lipid with glucose in metabolism.
Mostrar más [+] Menos [-]6:2 Cl-PFESA has the potential to cause liver damage and induce lipid metabolism disorders in female mice through the action of PPAR-γ Texto completo
2021
Pan, Zihong | Miao, Wenyu | Wang, Caiyun | Tu, Wenqing | Jin, Cuiyuan | Jin, Yuanxiang
6:2 Cl-PFESA is a polyfluoroalkyl ether with high environmental persistence that has been confirmed to have significant adverse effects on animals. In this study, 6-week-old female C57BL/6 mice were exposed to 0, 1, 3 and 10 μg/L 6:2 Cl-PFESA for 10 weeks to estimate the hepatotoxicity of 6:2 Cl-PFESA and explore its underlying molecular mechanism. The results indicated that 6:2 Cl-PFESA preferentially bioaccumulated in the liver and induced hepatic cytoplasmic vacuolation and hepatomegaly in mice. In addition, serum metabolic profiling showed that 6:2 Cl-PFESA exposure caused an abnormal increase in amino acids and an abnormal decrease in acyl-carnitine, which interfered with fatty acid transport and increased the risk of metabolic diseases. Further experiments showed that 6:2 Cl-PFESA formed more hydrogen bonds with PPAR-γ than PFOS, Rosi and GW9662, and the binding affinity of 6:2 Cl-PFESA toward PPAR-γ was the highest among the ligands. 6:2 Cl-PFESA promoted the differentiation of 3T3-L1 cells by increasing PPAR-γ expression. Therefore, our results showed that 6:2 Cl-PFESA has the potential to induce liver damage and dysfunction in female mice, and this effect was achieved through PPAR-γ. This study is the first to reveal the hepatic toxicity of 6:2 Cl-PFESA in female mammals and provides new insights for subsequent in-depth research.
Mostrar más [+] Menos [-]Metabolic, immunologic, and histopathologic responses on premetamorphic American bullfrog (Lithobates catesbeianus) following exposure to lithium and selenium Texto completo
2021
Pinto-Vidal, Felipe Augusto | Carvalho, Cleoni dos Santos | Abdalla, Fábio Camargo | Ceschi-Bertoli, Letícia | Moraes Utsunomiya, Heidi Samantha | Henrique da Silva, Renan | Salla, Raquel Fernanda | Jones-Costa, Monica
The presence of chemicals and the destruction of freshwater habitats have been addressed as one of the reasons for the decline in the amphibians’ populations worldwide. Considering the threat that these animals have been suffering in tropical regions, the present study tested if the Brazilian legislation, concerning the permissive levels of lithium and selenium in water bodies and effluents, warrants the protection of aquatic life. To do so, we assessed the metabolic, immunologic, and histopathologic alterations in liver samples of American bullfrog (Lithobates catesbeianus), at the premetamorphic stage, through biomarkers indicative of general energetic status, i.e., glucose, lipid, and protein metabolism using biochemical and histochemical approaches. The immunologic responses were assessed by the quantification of melanomacrophage centres (MMCs); the histopathologic evaluation of the liver sections was also performed. The assay was carried out over 21 days with two periods of sampling (after 7 and 21 days) to assess the effects of exposure over time. The animals were exposed to the considered safe levels of lithium (2.5 mg L⁻¹) and selenium (10 μg L⁻¹), both, isolated and mixed. The exposed animals showed alterations in glucose and lipid metabolism throughout the experiment. The intense presence of MMCs and histopathological responses are compatible with hepatotoxicity. The toxicity expressed by the employed animal model indicates that the Brazilian environmental legislation for the protection of aquatic life needs to be updated. With this study, we intend to provide data for better environmental policies and bring attention to sublethal effects triggered by the presence of contaminants in the aquatic environment.
Mostrar más [+] Menos [-]Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas Texto completo
2021
Teng, Jia | Zhao, Jianmin | Zhu, Xiaopeng | Shan, Encui | Zhang, Chen | Zhang, Wenjing | Wang, Qing
Microplastics (MPs) are widely found in coastal areas and oceans worldwide. The MPs are environmentally concerning due to their bioavailability and potential impacts on a wide range of marine biota, so assessing their impact on the biota has become an urgent research priority. In the present study, we exposed Crassostrea gigas oysters to irregular MPs of two polymer types (polyethylene (PE) and polyethylene terephthalate (PET)) at concentrations of 10 and 1000 μg L⁻¹ for 21 days. Accumulation of MPs, changes in metabolic enzyme activity, and histological damage were evaluated, and metabolomics analysis was conducted. Results demonstrated that PE and PET MPs were detected in the gills and digestive gland following exposure to both tested concentrations, confirming ingestion of MPs by the organisms. Moreover, both PE and PET MPs inhibited lipid metabolism, while energy metabolism enzyme activities were activated in the oysters. Histopathological damage of exposed oysters was also observed in this study. Integrated biomarker response (IBR) results showed that MPs toxicity increased with increasing MPs concentration, and the toxic effects of PET MPs on oysters was greater than PE MPs. In addition, metabolomics analysis suggested that MPs exposure induced alterations in metabolic profiles in oysters, with changes in energy metabolism and inflammatory responses. This study reports new insights into the consequences of MPs exposure in marine bivalves at environmentally relevant concentrations, providing valuable information for ecological risk assessment of MPs in a realistic conditions.
Mostrar más [+] Menos [-]Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO3) – Metabolomics, proteomics (& transcriptomics) Texto completo
2021
Maria, Vera L. | Licha, David | Scott-Fordsmand, Janeck J. | Huber, Christian G. | Amorim, Mónica J.B.
Silver nanomaterials (AgNMs) are broadly used and among the most studied nanomaterials. The underlying molecular mechanisms (e.g. protein and metabolite response) that precede phenotypical effects have been assessed to a much lesser extent. In this paper, we assess differentially expressed proteins (DEPs) and metabolites (DEMs) by high-throughput (HTP) techniques (HPLC-MS/MS with tandem mass tags, reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with mass spectrometric detection). In a time series (0, 7, 14 days), the standard soil model Enchytraeus crypticus was exposed to AgNM300K and AgNO₃ at the reproduction EC20 and EC50. The impact on proteins/metabolites was clearly larger after 14 days. NM300K caused more upregulated DEPs/DEMs, more so at the EC20, whereas AgNO₃ caused a dose response increase of DEPs/DEMs. Similar pathways were activated, although often via opposite regulation (up vs down) of DEPs, hence, dissimilar mechanisms underlie the apical observed impact. Affected pathways included e.g. energy and lipid metabolism and oxidative stress. Uniquely affected by AgNO₃ was catalase, malate dehydrogenase and ATP-citrate synthase, and heat shock proteins (HSP70) and ferritin were affected by AgNM300K. The gene expression-based data in Adverse Outcome Pathway was confirmed and additional key events added, e.g. regulation of catalase and heat shock proteins were confirmed to be included. Finally, we observed (as we have seen before) that lower concentration of the NM caused higher biological impact. Data was deposited to ProteomeXchange, identifier PXD024444.
Mostrar más [+] Menos [-]Proinflammatory lipid signals trigger the health effects of air pollution in individuals with prediabetes Texto completo
2021
Wang, Teng | Han, Yiqun | Li, Haonan | Wang, Yanwen | Chen, Xi | Chen, Wu | Qiu, Xinghua | Gong, Jicheng | Li, Weiju | Zhu, Tong
Individuals with metabolic disorders exhibit enhanced susceptibility to the cardiovascular health effects of particulate air pollution, but the underlying mechanisms are not yet understood. We aim to assess whether changes in proinflammatory lipid signals are associated with fine particulate matter (PM₂.₅) exposure in individuals with and without prediabetes. A longitudinal panel study was conducted in Beijing, China, and included 120 participants followed up over 589 clinical visits from August 2013 to February 2015. We measured 12 lipids derived from arachidonic acid pathways in blood samples of the participants via targeted lipidomic analyses. Ambient PM₂.₅ concentrations were continuously monitored at a station for associations with the lipids. Among the 120 participants, 110 (mean [SD] age at recruitment, 56.5 [4.2] years; 31 prediabetics) who visited the clinic at least twice over the follow-up period were assigned exposure values of the outdoor residential PM₂.₅ concentrations during the 1–14 days preceding each clinical visit. With an interquartile range increase in the 1-day-lag PM₂.₅ exposure (64.0 μg/m³), the prediabetic group had consistently greater increases in the concentration of arachidonate metabolites derived from the cytochrome P450 (CYP450) pathway (5,6-DHET, 15.8% [95% CI, 3.5–29.7%]; 8,9-DHET, 9.7% [95% CI, 0.6–19.6%]; 11,12-DHET, 8.3% [95% CI, 1.9–15.1%]; 14,15-DHET, 7.4% [95% CI, 0.9–14.4%]; and 20-HETE, 8.9% [95% CI, 1.0–17.5%]), compared with the healthy group. Among CYP450-derived lipids, 14,15-DHET and 20-HETE significantly mediated 8% and 8% of the PM₂.₅-associated increase in white blood cells, 10% and 13% of that in neutrophils, and 20% and 23% of that in monocytes, respectively, in the prediabetic group. In conclusion, proinflammatory lipid signals from CYP450 pathways triggered the health effects of particulate air pollution in individuals with prediabetes, suggesting that targeting lipid metabolism has therapeutic potential to attenuate or prevent the cardiovascular effects of air pollution in susceptible populations.
Mostrar más [+] Menos [-]Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans Texto completo
2020
Yang, Yunhan | Shao, Huimin | Wu, Qiuli | Wang, Dayong
Nanoplastics can be used in various fields, such as personal care products. Nevertheless, the effect of nanoplastic exposure on metabolism and its association with stress response remain largely unclear. Using Caenorhabditis elegans as an animal model, we determined the effect of nanopolystyrene exposure on lipid metabolism and its association with the response to nanopolystyrene. Exposure (from L1-larave to adult day-3) to 100 nm nanopolystyrene (≥1 μg/L) induced severe lipid accumulation and increase in expressions of mdt-15 and sbp-1 encoding two lipid metabolic sensors. Meanwhile, we found that SBP-1 acted downstream of intestinal MDT-15 during the control of response to nanopolystyrene. Intestinal transcriptional factor SBP-1 activated two downstream targets, fatty acyl CoA desaturase FAT-6 and heat-shock protein HSP-4 (a marker of endoplasmic reticulum unfolded protein response (ER UPR)) to regulate nanopolystyrene toxicity. Both MDT-15 and SBP-1 were involved in the activation of ER-UPR in nanopolystyrene exposed nematodes. Moreover, SBP-1 regulated the innate immune response by activating FAT-6 in nanopolystyrene exposed nematodes. In the intestine, function of MDT-15 and SBP-1 in regulating nanopolystyrene toxicity was under the control of upstream signaling cascade (PMK-1-SKN-1) in p38 MAPK signaling pathway. Therefore, our data raised an important molecular basis for potential protective function of lipid metabolic response in nanopolystyrene exposed nematodes.
Mostrar más [+] Menos [-]High carbohydrate diet partially protects Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects Texto completo
2020
Limbu, Samwel Mchele | Zhang, Han | Luo, Yuan | Chen, Li-Qiao | Zhang, Meiling | Du, Zhen-Yu
Antibiotics used in global aquaculture production cause various side effects, which impair fish health. However, the use of dietary composition such as carbohydrate, which is one of the dominant components in fish diets to attenuate the side effects induced by antibiotics, remains unclear. We determined the ability of high carbohydrate diet to protect Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. Triplicate groups of thirty O. niloticus (9.50 ± 0.08 g) were fed on medium carbohydrate (MC; 335 g/kg) and high carbohydrate (HC; 455 g/kg) diets without and with 2.00 g/kg diet of oxytetracycline (80 mg/kg body weight/day) hereafter, MCO and HCO for 35 days. Thereafter, we assessed growth performance, hepatic nutrients composition and metabolism, microbiota abundance, immunity, oxidative and cellular stress, hepatotoxicity, lipid peroxidation and apoptosis. To understand the possible mechanism of carbohydrate protection on oxytetracycline, we assessed the binding effects and efficiencies of mixtures of medium and high starch with oxytetracycline as well as the MCO and HCO diets. The O. niloticus fed on the MCO and HCO diets had lower growth rate, nutrients utilization and survival rate than those fed on the MC and HC diets, respectively. Dietary HCO increased hepatosomatic index and hepatic protein content of O. niloticus than MCO diet. The O. niloticus fed on the HCO diet had lower mRNA expression of genes related to protein, glycogen and lipid metabolism compared to those fed on the MCO diet. Feeding O. niloticus on the HCO diet increased innate immunity and reduced pathogenic bacteria, pro-inflammation, hepatotoxicity, cellular stress and apoptosis than the MCO diet. The high starch with oxytetracycline and HCO diet had higher-oxytetracycline binding effects and efficiencies than the medium starch with oxytetracyline and MCO diet, respectively. Our study demonstrates that, high carbohydrate partially protects O. niloticus from oxytetracycline-induced side effects by binding the antibiotic. Incorporating high carbohydrate in diet formulation for omnivorous fish species alleviates some of the side effects caused by antibiotics.
Mostrar más [+] Menos [-]The Echinodermata PPAR: Functional characterization and exploitation by the model lipid homeostasis regulator tributyltin Texto completo
2020
Capitão, Ana | Lopes-Marques, Mónica | Páscoa, Inês | Ruivo, Raquel | Mendiratta, Nicolau | Fonseca, Elza | Castro, L. Filipe C. | Santos, Miguel Machado
The wide ecological relevance of lipid homeostasis modulators in the environment has been increasingly acknowledged. Tributyltin (TBT), for instance, was shown to cause lipid modulation, not only in mammals, but also in fish, molluscs, arthropods and rotifers. In vertebrates, TBT is known to interact with a nuclear receptor heterodimer module, formed by the retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR). These modulate the expression of genes involved in lipid homeostasis. In the present work, we isolated for the first time the complete coding region of the Echinodermata (Paracentrotus lividus) gene orthologues of PPAR and RXR and evaluated the ability of a model lipid homeostasis modulator, TBT, to interfere with the lipid metabolism in this species. Our results demonstrate that TBT alters the gonadal fatty acid composition and gene expression patterns: yielding sex-specific responses in fatty acid levels, including the decrease of eicosapentaenoic acid (C20:5 n-3, EPA) in males, and increase of arachidonic acid (20:4n-6, ARA) in females, and upregulation of long-chain acyl-CoA synthetase (acsl), ppar and rxr. Furthermore, an in vitro test using COS-1 cells as host and chimeric receptors with the ligand binding domain (LBD) of P. lividus PPAR and RXR shows that organotins (TBT and TPT (Triphenyltin)) suppressed activity of the heterodimer PPAR/RXR in a concentration-dependent manner. Together, these results suggest that TBT acts as a lipid homeostasis modulator at environmentally relevant concentrations in Echinodermata and highlight a possible conserved mode of action via the PPAR/RXR heterodimer.
Mostrar más [+] Menos [-]