Refinar búsqueda
Resultados 1-4 de 4
Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice
2020
Feng, Dan | Zhang, Hongmin | Jiang, Xin | Zou, Jun | Li, Qingrong | Mai, Haiyan | Su, Dongfang | Ling, Wenhua | Feng, Xiang
Interactions between the intestine and the liver, the so-called ‘gut-liver axis’, play a crucial role in the onset of hepatic steatosis and non-alcoholic fatty liver disease. However, not much is known about the impact of environmental pollutants on the gut-liver axis and consequent hepatic steatosis. Bisphenol A (BPA), a widely used plasticiser, is an important environmental contaminant that affects gut microbiota. We hypothesised that BPA induces hepatic steatosis by promoting gut microbiota dysbiosis and activating the gut-liver axis. In this study, male CD-1 mice were fed with diet containing BPA (50 μg/kg body weight/day) for 24 weeks. Dietary exposure to BPA increased lipid contents and fat accumulation in the liver. Analysis of 16 S rRNA gene sequencing revealed that the diversity of gut microbiota reduced and the composition of gut microbiota was altered in the BPA-fed mice. Further, the abundance of Proteobacteria, a marker of dysbacteria, increased, whereas the abundance of Akkermansia, a gut microbe associated with increased gut barrier function and reduced inflammation, markedly decreased. Expression levels of intestinal tight junction proteins (zona occludens-1 and occludin) also decreased drastically, leading to increased intestinal permeability and elevated levels of endotoxins. Furthermore, BPA up-regulated the expression of Toll-like receptor 4 (TLR4) and phosphorylation of nuclear factor-kappa B (NF-κB) in the liver and increased the production of inflammatory cytokines, including interleukin-1β, interleukin-18, tumour necrosis factor-α, and interleukin-6. Take together, our work indicated that dietary intake of BPA induced hepatic steatosis, and this was closely related to dysbiosis of gut microbiota, elevated endotoxin levels, and increased liver inflammation through the TLR4/NF-κB pathway.
Mostrar más [+] Menos [-]Human inflammatory response of endotoxin affected by particulate matter-bound transition metals
2019
Moretti, Serena | Smets, Wenke | Hofman, Jelle | Mubiana, Kayawe Valentine | Oerlemans, Eline | Vandenheuvel, Dieter | Samson, Roeland | Blust, Ronny | Lebeer, Sarah
Bacterial endotoxins are a component of particulate matter (PM) with anticipated health implications, yet we know little about how host reception of endotoxin through toll-like receptor 4 (TLR4) is affected by its association with other PM components. Subsequently, we investigated the relationship between endotoxin concentration (recombinant Factor C (rFC) assay) and host recognition (HEK Blue-TLR4 NF-kB reporter cell line based assay) in various compositions of urban PM, including road traffic, industrial and urban green land use classes. While the assays did not correlate strongly between each other, the TLR4 reporter cell line was found to be better correlated to the IL-8 response of PM. Furthermore, the ability of the quantified endotoxin (rFC assay) to stimulate the TLR4/MD-2 complex was significantly affected by the urban land use class, where traffic locations were found to be significantly higher in bioactive endotoxin than the industrial and green locations. We subsequently turned our attention to PM composition and characterized the samples based on transition metal content (through ICP-MS). The effect of nickel and cobalt – previously reported to activate the hTLR4/MD-2 complex – was found to be negligible in comparison to that of iron. Here, the addition of iron as a factor significantly improved the regression model between the two endotoxin assays, explaining 77% of the variation of the TLR4 stimulation and excluding the significant effect of land use class. Moreover, the effect of iron proved to be more than a correlation, since dosing LPS with Fe²⁺ led to an increase up to 64% in TLR4 stimulation, while Fe²⁺ without LPS was unable to stimulate a response. This study shows that endotoxin quantification assays (such as the rFC assay) may not always correspond to human biological recognition of endotoxin in urban PM, while its toxicity can be synergistically influenced by the associated PM composition.
Mostrar más [+] Menos [-]Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells
2019
Kim, Nahyun | Han, Doo Hee | Suh, Myung-Whan | Lee, Jun-Ho | Oh, Seung-Ha | Park, Moo Kyun
Tight junctions (TJs) in the epithelium play a critical role in the formation of a paracellular epithelial barrier against the extracellular environment. Diesel exhaust particles (DEPs) disrupt the epithelial barrier. The aim of this study was to investigate how DEPs disrupt the epithelial barrier and whether Toll-like receptor 4 (TLR4) is involved in DEP-induced epithelial barrier dysfunction in primary human nasal epithelial (PHNE) cells.PHNE cells were cultured at an air–liquid interface (ALI) to create a fully differentiated in vivo-like model of the epithelium and then exposed to DEPs (particulate matter <4 μm) or lipopolysaccharide (LPS) alone (mono-exposure) and DEPs plus LPS (co-exposure) at the apical side of the PHNE. TJ formation and integrity were monitored by measuring transepithelial electric resistance (TEER) and fluorescently labeled dextran permeability. The expression of TJ proteins was assessed by confocal microscopy and a biochemical assay.PHNE cell viability was reduced in a time- and dose-dependent manner following DEP exposure. TEER was significantly decreased at ALI day 20 but not at day 12 following DEP exposure. The dextran permeability of the PHNE was significantly increased at both ALI day 12 and day 20 following DEP exposure. The increased dextran permeability recovered to that of the control following co-exposure to DEPs plus LPS. In the presence of DEPs, the membrane expression of myosin light chain kinase (MLCK) was dramatically increased, and the expression of occludin, ZO1, claudin-1, and E-cadherin was significantly decreased. Co-exposure to DEPs plus LPS significantly reduced membrane MLCK, claudin-1, and E-cadherin but increased occludin and ZO1 expression at ALI day 12.The activation of TLR4 by LPS inhibits MLCK trafficking to the plasma membrane, and this increased during DEP exposure, resulting in increased occludin expression at the plasma membrane that partially recovered TJ barrier dysfunction following DEP exposure.
Mostrar más [+] Menos [-]Gut as a target for cadmium toxicity
2018
Tinkov, Alexey A. | Gritsenko, Viktor A. | Skalnaya, Margarita G. | Cherkasov, Sergey V. | Aaseth, Jan | Skalny, Anatoly V.
The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy.
Mostrar más [+] Menos [-]