Refinar búsqueda
Resultados 1-10 de 360
Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
Mostrar más [+] Menos [-]Phase-specific stable isotope fractionation effects during combined gas-liquid phase exchange and biodegradation
2022
Khan, Ali M. | Gharasoo, Mehdi | Wick, Lukas Y. | Thullner, Martin
Stable isotope fractionation of toluene under dynamic phase exchange was studied aiming at ascertaining the effects of gas-liquid partitioning and biodegradation of toluene stable isotope composition in liquid-air phase exchange reactors (Laper). The liquid phase consisted of a mixture of aqueous minimal media, a known amount of a mixture of deuterated (toluene-d) and non-deuterated toluene (toluene-h), and bacteria of toluene degrading strain Pseudomonas putida KT2442. During biodegradation experiments, the liquid and air-phase concentrations of both toluene isotopologues were monitored to determine the observable stable isotope fractionation in each phase. The results show a strong fractionation in both phases with apparent enrichment factors beyond −800‰. An offset was observed between enrichment factors in the liquid and the gas phase with gas-phase values showing a stronger fractionation in the gas than in the liquid phase. Numerical simulation and parameter fitting routine was used to challenge hypotheses to explain the unexpected experimental data. The numerical results showed that either a very strong, yet unlikely, fractionation of the phase exchange process or a – so far unreported – direct consumption of gas phase compounds by aqueous phase microorganisms could explain the observed fractionation effects. The observed effect can be of relevance for the analysis of volatile contaminant biodegradation using stable isotope analysis in unsaturated subsurface compartments or other environmental compartment containing a gas and a liquid phase.
Mostrar más [+] Menos [-]Facile nanoplastics formation from macro and microplastics in aqueous media
2022
Peller, Julie R. | Mezyk, Stephen P. | Shidler, Sarah | Castleman, Joe | Kaiser, Scott | Faulkner, Richard F. | Pilgrim, Corey D. | Wilson, Antigone | Martens, Sydney | Horne, Gregory P.
The immense production of plastic polymers combined with their discordancy with nature has led to vast plastic waste contamination across the geosphere, from the oceans to freshwater reservoirs, wetlands, remote snowpacks, sediments, air and multiple other environments. These environmental pollutants include microplastics (MP), typically defined as small and fragmented plastics less than 5 mm in size, and nanoplastics (NP), particles smaller than a micrometer. The formation of micro and nanoplastics in aqueous media to date has been largely attributed to fragmentation of plastics by natural (i.e., abrasion, photolysis, biotic) or industrial processes. We present a novel method to create small microplastics (≲ 5 μm) and nanoplastics in water from a wide variety of plastic materials using a small volume of a solubilizer liquid, such as n-dodecane, in combination with vigorous mixing. When the suspensions or solutions are subjected to ultrasonic mixing, the particle sizes decrease. Small micro- and nanoparticles were made from commercial, real world and waste (aged) polyethylene, polystyrene, polycarbonate and polyethylene terephthalate, in addition to other plastic materials and were analyzed using dark field microscopy, Raman spectroscopy and particle size measurements. The presented method provides a new and simple way to create specific size distributions of micro- and nanoparticles, which will enable expanded research on these plastic particles in water, especially those made from real world and aged plastics. The ease of NP and small MP formation upon initial mixing simulates real world environments, thereby providing further insight into the behavior of plastics in natural settings.
Mostrar más [+] Menos [-]Application of gas chromatographic retention times to determine physicochemical properties of nitrated, oxygenated, and parent polycyclic aromatic hydrocarbons
2022
Vuong, Quang Tran | Son, Ji-Min | Thang, Phan Quang | Ohura, Takeshi | Choi, Sung-Deuk
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are receiving attention because of their high toxicity compared with parent PAHs. However, the experimental data of their physicochemical properties has been limited. This study proposed the gas chromatographic retention time (GC-RT) technique as an effective alternative one to determine octanol-air partition coefficients (KOA) and sub-cooled liquid vapor pressures (PL) for 11 NPAHs, 10 OPAHs, and 19 parent PAHs. The slopes and intercepts of the linear regressions between temperature versus KOA and PL were provided and can be used to estimate KOA and PL for the 40 targeted compounds at any temperature. The internal energies of phase transfer (ΔUOA) and enthalpies of vaporization (ΔHL) for all targeted compounds were also calculated using the GC-RT technique. High-molecular-weight compounds may release or absorb higher heat energy to transform between different phases. NPAHs and OPAHs had a non-ideal solution behavior with activity in octanol (γₒcₜ) in the range of 19–53 and 18–1,078, respectively, which is larger than the unity threshold. A comparison among four groups of PAH derivatives showed that a functional group (nitro-, oxygen-, chloro-, and bromo-) in PAH derivatives increased γₒcₜ for corresponding parent PAHs by tens (mono-group) to hundreds of times (di-group). This study suggests that the GC-RT method is applicable for indirectly measuring the physicochemical properties of various groups of organic compounds.
Mostrar más [+] Menos [-]Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture
2021
Sales Morais, Naassom Wagner | Coelho, Milena Maciel Holanda | Silva, Amanda de Sousa e | Silva, Francisco Schiavon Souza | Ferreira, Tasso Jorge Tavares | Pereira, Erlon Lopes | dos Santos, André Bezerra
Methane (CH₄) production from anaerobic digestion of solid and liquid agro-industrial wastes is an attractive strategy to meet the growing need for renewable energy sources and promote environmentally appropriate disposal of organic wastes. This work aimed at determining the CH₄ production potential of six agro-industrial wastewaters (AWW), evaluating the most promising for methanization purposes. It also aims to provide kinetic parameters and stoichiometric coefficients of CH₄ production and define which kinetic models are most suitable for simulating the CH₄ production of the evaluated substrates. The AWW studied were swine wastewater (SW), slaughterhouse wastewater (SHW), dairy wastewater (DW), brewery wastewater (BW), fruit processing wastewater (FPW), and residual glycerol (RG) of biodiesel production. RG was the substrate that showed the highest methanization potential. Exponential kinetic models can be efficiently applied for describing CH₄ production of more soluble substrates. On the other hand, logistic models were more suitable to predict the CH₄ production of more complex substrates.
Mostrar más [+] Menos [-]Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review
2021
Ong, Ee Shen | Rabbani, Alija Haydar | Habashy, Mahmoud M. | Abdeldayem, Omar M. | Al-Sakkari, Eslam G. | Rene, Eldon R.
By the year 2050, it is estimated that the demand for palm oil is expected to reach an enormous amount of 240 Mt. With a huge demand in the future for palm oil, it is expected that oil palm by-products will rise with the increasing demand. This represents a golden opportunity for sustainable biohydrogen production using oil palm biomass and palm oil mill effluent (POME) as the renewable feedstock. Among the different biological methods for biohydrogen production, dark fermentation and photo-fermentation have been widely studied for their potential to produce biohydrogen by using various waste materials as feedstock, including POME and oil palm biomass. However, the complex structure of oil palm biomass and POME, such as the lignocellulosic composition, limits fermentable substrate available for conversion to biohydrogen. Therefore, proper pre-treatment and suitable process conditions are crucial for effective biohydrogen generation from these feedstocks. In this review, the characteristics of palm oil industrial waste, the process used for biohydrogen production using palm oil industrial waste, their pros and cons, and the influence of various factors have been discussed, as well as a comparison between studies in terms of types of reactors, pre-treatment strategies, the microbial culture used, and optimum operating condition have been presented. Through biological production, hydrogen production rates up to 52 L-H₂/L-medium/h and 6 L-H₂/L-medium/h for solid and liquid palm oil industrial waste, respectively, can be achieved. In short, the continuous supply of palm oil production by-product and relatively, the low cost of the biological method for hydrogen production indicates the potential source of renewable energy.
Mostrar más [+] Menos [-]Conversion and transformation of N species during pyrolysis of wood-based panels: A review
2021
Xu, Deliang | Yang, Liu | Zhao, Ming | Zhang, Jinrui | Syed Shatir A. Syed-Hassan, | Sun, Hongqi | Hu, Xun | Zhang, Hong | Zhang, Shu
Understanding the migration and conversion of nitrogen in wood-based panels (WBPs) during pyrolysis is fundamentally important for potentially transforming the N-containing species into valuable material-based products. This review firstly summarizes the commonly used methods for examining N evolution during the WBPs pyrolysis before probing into the association between the wood and adhesives.The potential effects of wood-adhesive interaction on the pyrolysis process are subsequently analyzed. Furthermore, the controversial statements from literature on the influence of adhesives on wood pyrolysis behavior are discussed, which is followed by the detailed investigation into the distribution and evolution of N-containing species in gas, liquid and char, respectively, during WBPs pyrolysis in recent studies. The differences in N species due to the heating sources (i.e. electrical heating vs microwave heating) are particularly compared. Finally, based on the characteristics of staged pyrolysis, co-pyrolysis and catalytic pyrolysis, the converting pathways for WBPs are proposed with an emphasis on the production of value-added chemicals and carbon materials, simultaneously mitigating NOₓ emission.
Mostrar más [+] Menos [-]Analysis of the effect of air temperature on ammonia emission from band application of slurry
2021
Pedersen, Johanna | Nyord, Tavs | Feilberg, Anders | Labouriau, Rodrigo
Field application of liquid animal manure (slurry) is a significant source of ammonia (NH₃) emission to the atmosphere. It is well supported by theory and previous studies that air temperature effects NH₃ flux from field applied slurry. The objectives of this study was to statistically model the response of temperature at the time of application on cumulative NH₃ emission. Data from 19 experiments measured with the same system of dynamic chambers and online measurements were included. A generalized additive model allowing to represent non-linear functional dependences of the emission on the temperature revealed that a positive response of the cumulative NH₃ emission on the temperature at the time of application up to a temperature of approximately 14 °C. Above that, the temperature effect is insignificant. Average temperature over the measuring period was not found to carry any additional information on the cumulative NH₃ emission. The lack of emission response on temperature above a certain point is assumed to be caused by drying out of the slurry and possible crust formation. This effect is hypothesized to create a physical barrier that reduce diffusion of NH₃ to the soil surface, thereby lowering the emission rate. Furthermore, the effect of the interaction between soil type and application technique and the effect of dry matter content of the slurry was derived from the model, and found to be significant on cumulative NH₃ emission predictions.
Mostrar más [+] Menos [-]Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor
2021
Ly, Hoang Vu | Tran, Quoc Khanh | Kim, Seung-Soo | Kim, Jinsoo | Choi, Suk Soon | Oh, Changho
Biofuel production via pyrolysis has received increasing interest as a promising solution for utilization of now wasted food residue. In this study, the fast pyrolysis of mixed food waste (MFW) was performed in a bubbling fluidized-bed reactor. This was done under different operating conditions (reaction temperatures and carrier gas flow rate) that influence product distribution and bio-oil composition. The highest liquid yield (49.05 wt%) was observed at a pyrolysis temperature of 475 °C. It was also found that the quality of pyrolysis bio-oils (POs) could be improved using catalysts. The catalytic fast pyrolysis of MFW was studied to upgrade the pyrolysis vapor, using dolomite, red mud, and HZSM-5. The higher heating values (HHVs) of the catalytic pyrolysis bio-oils (CPOs) ranged between 30.47 and 35.69 MJ/kg, which are higher than the HHVs of non-catalytic pyrolysis bio-oils (27.69–31.58 MJ/kg). The major components of the bio-oils were fatty acids, N-containing compounds, and derivatives of phenol. The selectivity for bio-oil components varied depending on the catalysts. In the presence of the catalysts, the oxygen was removed from oxygenates via moisture, CO₂, and CO. The CPOs contained aliphatic hydrocarbons, polycyclic aromatic compounds (such as naphthalene), pyridine derivatives, and light oxygenates (cyclic alkenes and ketones).
Mostrar más [+] Menos [-]Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA)
2021
Valdés, M Eugenia | Santos, Lúcia H.M.L.M. | Rodríguez Castro, M Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, M Valeria
In this study, we evaluated the distribution of up to forty-three antibiotics and 4 metabolites residues in different environmental compartments of an urban river receiving both diffuse and point sources of pollution. This is the first study to assess the fate of different antibiotic families in water, biofilms and sediments simultaneously under a real urban river scenario. Solid phase extraction, bead-beating disruption and pressurized liquid extraction were applied for sample preparation of water, biofilm and sediment respectively, followed by the quantification of target antibiotics by UPLC-ESI-MS/MS. Twelve antibiotics belonging to eight chemical families were detected in Suquía River samples (67% positive samples). Sites downstream the WWTP discharge were the most polluted ones. Concentrations of positive samples ranged 0.003-0.29 µg L⁻¹ in water (max. cephalexin), 2-652 µg kg⁻¹d.w. in biofilm (max. ciprofloxacin) and 2-34 µg kg⁻¹d.w. in sediment (max. ofloxacin). Fluoroquinolones, macrolides and trimethoprim were the most frequently detected antibiotics in the three compartments. However cephalexin was the prevalent antibiotic in water. Antibiotics exhibited preference for their accumulation from water into biofilms rather than in sediments (bioaccumulation factors > 1,000 L kg⁻¹d.w. in biofilms, while pseudo-partition coefficients in sediments < 1,000 L kg⁻¹d.w.). Downstream the WWTP there was an association of antibiotics levels in biofilms with ash-free dry weight, opposite to chlorophyll-a (indicative of heterotrophic communities). Cephalexin and clarithromycin in river water were found to pose high risk for the aquatic ecosystem, while ciprofloxacin presented high risk for development of antimicrobial resistance. This study contributes to the understanding of the fate and distribution of antibiotic pollution in urban rivers, reveals biofilm accumulation as an important environmental fate, and calls for attention to government authorities to manage identified highly risk antibiotics.
Mostrar más [+] Menos [-]