Refinar búsqueda
Resultados 1-10 de 77
The influence of pH, soil type and time on adsorbtion and uptake by plants of Cd added to the soil.
1989
Eriksson J.E.
Ecotoxicological assessment of sewage sludge-derived biochars-amended soil
2021
Tomczyk, Beata | Siatecka, Anna | Bogusz, Aleksandra | Oleszczuk, Patryk
The study aimed to evaluate the ecotoxicity of soil (S) amended with biochars (BCKN) produced by the thermal conversion of sewage sludge (SSL) at temperatures of 500 °C, 600 °C, or 700 °C and SSL itself. The ecotoxicological tests were carried out on organisms representing various trophic levels (Lepidium sativum in plant, Folsomia candida in invertebrates, and Aliivibrio fischeri in bacteria). Moreover, the study evaluated the effects of three plants (Lolium perenne, Trifolium repens, and Arabidopsis thaliana) growing on BCKN700-amended soil on its ecotoxicological properties. The experiment was carried out for six months. In most tests, the conversion of sewage sludge into biochar caused a significant decrease in toxicity by adding it to the soil. The pyrolysis temperature directly determined this effect. The soil amended with the biochars produced at higher temperatures (600 °C and 700 °C) generally exhibited lower toxicity to the test organisms than the SSL. Because of aging, all the biochars lost their inhibition properties against the tested organisms in the solid-phase tests and had a stimulating influence on the reproductive ability of F. candida. With time, the fertilizing effect of the BCKN700 amended soil also increased. The aged biochars also did not have an inhibitory effect on A. fischeri luminescence in the leachate tests. The study has also demonstrated that the cultivation of an appropriate plant species may additionally reduce the toxicity of soil fertilized with biochar. The obtained results show that the conversion of sewage sludge to biochar carried out at an appropriate temperature can become a useful method in reducing the toxicity of the waste and while being safe for agricultural purposes.
Mostrar más [+] Menos [-]Enhanced reduction of lead bioavailability in phosphate mining wasteland soil by a phosphate-solubilizing strain of Pseudomonas sp., LA, coupled with ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.)
2021
Xiao, Chunqiao | Guo, Shuyu | Wang, Qi | Chi, Ruan
Due to ecologically unsustainable mining strategies, there remain large areas of phosphate mining wasteland contaminated with accumulated lead (Pb). In this study, a Pb-resistant phosphate-solubilizing strain of Pseudomonas sp., LA, isolated from phosphate mining wasteland, was coupled with two species of native plants, ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.), for use in enhancing the reduction of bioavailable Pb in soil from a phosphate mining wasteland. The effect of PbCO₃ solubilization by Pseudomonas sp. strain LA was evaluated in solution culture. It was found that strain LA could attain the best solubilization effect on insoluble Pb when the PbCO₃ concentration was 1% (w/v). Pot experiments were carried out to investigate the potential of remediation by ryegrass and sonchus in phosphate mining wastelands with phosphate rock application and phosphate-solubilizing bacteria inoculation. Compared to the control group without strain LA inoculation, the biomass and length of ryegrass and sonchus were markedly increased, available P and Pb in roots increased by 22.2%–325% and 23.3%–368%, respectively, and available P and Pb in above-ground parts increased by 4.44%–388% and 1.67%–303%, respectively, whereas available Pb in soil decreased by 14.1%–27.3%. These results suggest that the combination of strain LA and plants is a bioremediation strategy with considerable potential and could help solve the Pb-contamination problem in phosphate mining wastelands.
Mostrar más [+] Menos [-]Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains
2021
Ke-tan, | Guo, Guangyu | Liu, Junrong | Zhang, Chao | Tao, Yue | Wang, Panpan | Xu, Yanhong | Chen, Lanzhou
To explore a novel strategy for the remediation of soils polluted with Cu and Cd, three strains of plant-growth-promoting rhizobacteria (PGPRs) isolated from contaminated mines and two grass species (perennial ryegrass and tall fescue) were selected in this study. The performance of PGPR strains in metal adsorption, maintaining promotion traits under stress, and ameliorating phytostabilization potential was evaluated. Cd²⁺ exerted a stronger deleterious effect on microbial growth than Cu²⁺, but the opposite occurred for grass seedlings. Adsorption experiment showed that the growing PGPR strains were able to immobilize maximum 79.49% Cu and 81.35% Cd owing to biosorption or bioaccumulation. The strains exhibited the ability to secrete indole-3-acetic acid (IAA) and dissolve phosphorus in the absence and presence of metals, and IAA production was even enhanced in the presence of low Cu²⁺ (5 mg L⁻¹). However, the siderophore-producing ability of the isolates was strongly suppressed under Cu and Cd exposure. Ryegrass was further selected for pot experiments owing to its higher germination rate and tolerance under Cu and Cd stress than fescue. Pot-experiment results revealed that PGPR addition significantly increased the shoot and root biomasses of ryegrass by 11.49%–44.50% and 43.53%–90.29% in soil co-contaminated with 800 mg Cu kg⁻¹ and 30 mg Cd kg⁻¹, respectively. Metal uptake and translocation in inoculated ryegrass significantly decreased owing to the reduced diethylenetriamine pentaacetic acid-extractable metal content and increased residual metal-fraction percentage mediated by PGPR. Interestingly, stress mitigation was observed in these inoculated plants; in particular, their malondialdehyde content and superoxide dismutase activity were even significantly lower than those of ryegrass under normal conditions. Therefore, PGPR could be a promising option to enhance the phytostabilization efficiency of Cu and Cd in heavily polluted soils.
Mostrar más [+] Menos [-]The influence of salinization on seed germination and plant growth under mono and polyculture
2020
Sea level rise induced-salinization is lowering coastal soils productivity. In order to assess the effects that increased salinity may provoke in terrestrial plants, using as model species: Trifolium pratense, Lolium perenne, Festuca arundinacea and Vicia sativa, two specific objectives were targeted: i) to determine the sensitivity of the selected plant species to increased salinity (induced by seawater-SW or by NaCl, proposed as a surrogate of SW) and, ii) to assess the influence of salinization in total biomass under different agricultural practices (mono- or polycultures).The four plant species exhibited a higher sensitivity to NaCl than to SW. Festuca arundinacea was the most tolerant species to NaCl (EC₅₀,ₛₑₑd gₑᵣₘᵢₙₐₜᵢₒₙ and EC₅₀,gᵣₒwₜₕ of 18.6 and 10.5 mScm⁻¹, respectively). The other three species presented effective conductivities in the same order of magnitude and, in general, with 95% confidence limits overlapping. Soil moistened with SW caused no significant adverse effects on seed germination and growth of L. perenne. Similar to NaCl, the other three species, in general, presented a similar sensitivity to SW exposure with EC₅₀,ₛₑₑd gₑᵣₘᵢₙₐₜᵢₒₙ and EC₅₀,gᵣₒwₜₕ within the same order of magnitude and with confidence limits overlapping.The agricultural practice (mono-vs polyculture) showed some influence on the biomass of each plant species. When considering total productivity, for aerial and root biomass, it was higher in control comparatively to salinization conditions. Under salinization stress, the practice of polyculture was associated with a higher aerial and root total biomass than monocultures (for instance with combinations with T. pratense and F. arundinacea).Results suggest that the effects of salinity stress on total productivity may be minimized under agricultural practices of polyculture. Thus, this type of cultures should be encouraged in low-lying coastal ecosystems that are predicted to suffer from salinization caused by seawater intrusions.
Mostrar más [+] Menos [-]Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.)
2020
Li, Guirong | Chen, Fukai | Jia, Shengyong | Wang, Zongshuo | Zuo, Qiting | He, Hongmou
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co−contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co−contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co−contaminated soil.
Mostrar más [+] Menos [-]Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil
2018
Hockmann, Kerstin | Tandy, Susan | Studer, Björn | Evangelou, Michael W.H. | Schulin, R. (Rainer)
Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L−1 to ∼10 μg L−1, which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g−1. Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g−1 Pb, 150 μg g−1 Zn, 15–35 μg g−1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study.
Mostrar más [+] Menos [-]Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy
2017
Ji, Ying | Sarret, Géraldine | Schulin, R. (Rainer) | Tandy, Susan
Antimony (Sb) is a contaminant of increased prevalence in the environment, but there is little knowledge about the mechanisms of its uptake and translocation within plants. Here, we applied for the synchrotron based X-ray absorption near-edge structure (XANES) spectroscopy to analyze the speciation of Sb in roots and shoots of rye grass (Lolium perenne L. Calibra). Seedlings were grown in nutrient solutions to which either antimonite (Sb(III)), antimonate (Sb(V)) or trimethyl-Sb(V) (TMSb) were added. While exposure to Sb(III) led to around 100 times higher Sb accumulation in the roots than the other two treatments, there was no difference in total Sb in the shoots. Antimony taken up in the Sb(III) treatment was mainly found as Sb-thiol complexes (roots: >76% and shoots: 60%), suggesting detoxification reactions with compounds such as glutathione and phytochelatins. No reduction of accumulated Sb(V) was found in the roots, but half of the translocated Sb was reduced to Sb(III) in the Sb(V) treatment. Antimony accumulated in the TMSb treatment remained in the methylated form in the roots. By synchrotron based XANES spectroscopy, we were able to distinguish the major Sb compounds in plant tissue under different Sb treatments. The results help to understand the translocation and transformation of different Sb species in plants after uptake and provide information for risk assessment of plant growth in Sb contaminated soils.
Mostrar más [+] Menos [-]Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil
2014
Beesley, Luke | Inneh, Onyeka S. | Norton, Gareth J. | Moreno-Jimenez, Eduardo | Pardo, Tania | Clemente, Rafael | Dawson, Julian J.C.
Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l−1) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure–monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk.
Mostrar más [+] Menos [-]Effects of ozone on inter- and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens
2009
Hayes, F. | Mills, G. | Ashmore, M.
Trifolium repens and Lolium perenne were exposed as both monocultures and two-species mixtures to an episodic rural ozone regime in large, well-watered containers within solardomes for 12 weeks. There were reductions in biomass for T. repens, but not L. perenne, and the proportion of T. repens decreased in ozone-exposed mixtures compared to the control. In addition, leaf biomass of T. repens was maintained at the expense of biomass partitioning to the stolons. The decreased growth corresponded with decreased photosynthetic capacity for T. repens, however, by the end of the exposure there was also decreased photosynthetic capacity of L. perenne, a species previously considered insensitive to ozone. The observed decreases in photosynthetic efficiency and capacity in elevated ozone indicate that the ability of such ubiquitous vegetation to act as a sink for atmospheric carbon may be reduced in future climates. Ozone causes changes in biomass partitioning, and photosynthetic efficiency and capacity that could decrease the ability of plants to act as a carbon sink.
Mostrar más [+] Menos [-]