Refinar búsqueda
Resultados 1-7 de 7
Polychlorinated dibenzo-p-dioxins and dibenzofurans in lotus from a lake historically polluted by the chlor-alkali industry: Occurrence, organ distribution and health risk from dietary intake
2022
Du, Rui | Luo, Xi | Huang, Yani | Chen, Lufeng | Huang, Zichun | Mao, Xiaowei | Liang, Yong | Zhang, Qinghua | Wang, Pu
In this study, the organ distribution and exposure risk from dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were investigated for lotus collected from Ya-er Lake, a lake in Hubei Province, Central China that was historically polluted by the chlor-alkali industry. The highest concentrations of PCDD/Fs were found in the main and fibrous lotus roots, with mean values of 48.9 ± 90.1 pg/g and 94.6 ± 143 pg/g, respectively. In all the investigated samples, Octa-CDD (OCDD) and Octa-CDF (OCDF) were the predominant congeners, at 26% and 17% of Σ₁₇ PCDD/Fs, respectively, followed by 1,2,3,4,6,7,8-HpCDF (9%). The distribution ratios of PCDD/Fs in adjacent lotus organs indicated that PCDD/Fs accumulated easily in edible organs, such as lotus seeds, membrane and leaves. The WHO-TEQ in the edible lotus organs and the probable daily intake (PDI) of lotus products by residents were calculated: the toxic equivalents in the lotus fruit parts reached a mean of 2 pg WHO-TEQ₂₀₀₅/g dw, and the mean weekly intake of lotus products for adolescents living around Ya-er Lake was 2.3 pg WHO-TEQ/kg bw/week. These results suggested that long-term consumption of lotus products from Ya-er Lake presents a health hazard to residents.
Mostrar más [+] Menos [-]Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community
2012
Hayes, Felicity | Williamson, Jennifer | Mills, Gina
Mesocosms representing the BAP Priority habitat ‘Calcareous Grassland’ were exposed to eight ozone profiles for twelve-weeks in two consecutive years. Half of the mesocosms received a reduced watering regime during the exposure periods. Numbers and timing of flowering in the second exposure period were related to ozone concentration and phytotoxic ozone dose (accumulated stomatal flux). For Lotus corniculatus, ozone accelerated the timing of the maximum number of flowers. An increase in mean ozone concentration from 30ppb to 70ppb corresponded with an advance in the timing of maximum flowering by six days. A significant reduction in flower numbers with increasing ozone was found for Campanula rotundifolia and Scabiosa columbaria and the relationship with ozone was stronger for those that were well-watered than for those with reduced watering. These changes in flowering timing and numbers could have large ecological impacts, affecting plant pollination and the food supply of nectar feeding insects.
Mostrar más [+] Menos [-]An Eco-friendly Solution for Oil Spill Absorption
2023
Ahmad Arquam, Minal Deshmukh and Aadil Pathan
It is extremely difficult to clean up accidental oil spills in water since conventional oil sorbents absorb much more water in addition to the oil. Alternatively, cleanup techniques might lead to secondary contamination. This study examines and measures the oil absorption capacities of two hydrophobic natural fibers: water hyacinth (Eichhornia crassipes) and lotus (Nelumbo nucifera). At the laboratory scale, the absorption of engine oil, vegetable oil, and diesel oils onto various dry biomass materials, including water hyacinth and lotus with different particle sizes (BSS-44, BSS-60, BSS-100, BSS-120, BSS-160, and BSS-200), was investigated. Water hyacinth shows a higher absorption efficiency for all samples as compared to the lotus.
Mostrar más [+] Menos [-]Biochar Derived from Treated Lotus Stem and Adsorption of Phthalic Acid Esters
2021
Zhang, Ruiling | Chen, Linlin | Qiu, Binbin | Sun, Xiaojing | Qin, Songyan | Wang, Bo | Li, Feiyue | Zhao, Lixin | Zhu, Zhe
Phthalic acid ester (PAE), a plasticizer, is increasingly being detected in different environments. These compounds can gravely affect the human endocrine system. The present study aims to prepare adsorbents that can effectively adsorb PAE pollutants. To fabricate a better carbon structure than conventional biochar, the sodium hydroxide solution was used as a hydrolyzing agent to pretreat the biomass in order to weaken the bonds in lignin, cellulose, and hemicellulose. As a result, biochar with a special porous carbon structure is obtained. To study the characteristics of the biochar and its adsorption properties, dimethyl phthalate (DMP)—a PAE—was selected as the adsorbate. The morphology and structural composition of the biochar were examined via an environment scanning electron microscope with a field emission gun (SEM), surface area analyzer (BET), Fourier transform infrared spectrometer (FTIR), thermal gravimetry (TG/DTG), X-ray diffractometry (XRD), and Raman spectroscopy. The BET data of the biochar increased by 125.3 times than that of the original biochar. The layer spacing and the surface functional groups of the pretreated biochar also increased. After performing the micro-morphological regulation of biomass using sodium hydroxide, the adsorption performance of biochar with regard to PAE effectively improved and an adsorption capacity of 125 mg/g was observed for DMP. The adsorption kinetics and thermodynamic experiments showed that DMP adsorption by biochar follows the Langmuir and pseudo-second-order models.
Mostrar más [+] Menos [-]Tailored high mesoporous activated carbons derived from Lotus seed shell using one-step ZnCl2-activated method with its high Pb(II) capturing capacity
2019
Huang, Xianling | Huang, Yang | Pan, Zhong | Xu, Wentian | Zhang, Weihua | Zhang, Xin
Lotus seed shell was employed using one-step method combining carbonization with ZnCl₂ activation to synthesize activated carbons because of its inexpensiveness and local accessibility. The lotus seed shell–activated carbons (LSSACs) with the highest surface area (2450.8 m²/g) and mesoporosity (98.6%) and the largest pore volume (1.514 cm³/g) were tailored under optimum conditions as follows: impregnation ratio = 2:1, carbonization temperature = 600 °C, and time = 1.0 h. The surface Zn(II), abundant hydroxyl, and carboxyl functional groups from the activation process could result in rapid Pb(II) adsorption onto the LSSAC surface through surface complexation, ion exchange, or precipitation. The maximum monolayer adsorption capacity (qₘ) for Pb(II) of 247.7 mg/g at 25 °C could be fitted from the Langmuir isotherm. The Gibbs free energy (△G) and positive enthalpy (△H) indicated that the adsorption process was spontaneous and endothermic, and to some extent, it was explained by the intra-particle diffusion mechanism. Our results may provide a promising way to produce activated carbons with high adsorption capacity using solid waste, which will eventually promote the environmental sustainability.
Mostrar más [+] Menos [-]Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment
2022
Esterhuizen, Maranda | Kim, Yŏng-jun
Plastic waste is recognised as hazardous, with the risk increasing as the polymers break down in nature to secondary microplastics or even nanoplastics. The number of studies reporting on the prevalence of microplastic in every perceivable niche and bioavailable to biota is dramatically increasing. Knowledge of the ecotoxicology of microplastic is advancing as well; however, information regarding plants, specifically aquatic macrophytes, is still lacking. The present study aimed to gain more information on the ecotoxicological effects of six different polymer types as 4 mm microplastic on the morphology (germination and growth) and the physiology (catalase and glutathione S-transferase activity) of the rooted aquatic macrophyte, Nelumbo nucifera. The role of sediment was also considered by conducting all exposure both in a sediment-containing and sediment-free exposure system. Polyvinyl chloride and polyurethane exposures caused the highest inhibition of germination and growth compared to the control. However, the presence of sediment significantly decreased the adverse effects. Catalase activity was increased with exposure to polyvinyl chloride, polyurethane, and polystyrene, both in the presence and absence of sediment but more so in the sediment-free system. Glutathione S-transferase activity was significantly increased with exposure to polypropylene, polyvinyl chloride, and polyethylene terephthalate in the sediment-free system and exposure to polyethylene terephthalate and polyurethane in the absence of sediment. There was no clear correlation between the morphological and physiological effects observed. Further studies are required to understand the underlying toxicity mechanism of microplastics.
Mostrar más [+] Menos [-]Unravelling the photoprotective effects of freshwater alga Nostoc commune Vaucher ex Bornet et Flahault against ultraviolet radiations
2022
Bhatia, Saurabh | Al-Harrasi, Ahmed | Behl, Tapan | Anwer, Md Khalid | Ahmed, Mohammed Muqtader | Mittal, Vineet | Kaushik, Deepak | Chigurupati, Sridevi | Kabir, Md Tanvir | Sharma, Pritam Babu | Chaugule, Bhupal | Vargas-de-la-Cruz, Celia
Several studies have suggested the direct relationship between skin complications, air pollution, and UV irradiation. UVB radiations cause various skin complications such as skin aging, skin inflammation, and skin cancer. The current study is designed to develop an ultraviolet (UV) absorbing MAA-loaded topical gel and to evaluate its UVA and UVB screening potential. MAA was extracted from the Nostoc commune Vaucher ex Bornet et Flahault (N. commune) and characterized by HPLC-PDA (with a retention time 2.6 min), UV-Visible (absorption maximum 334 nm), and mass spectrometry (m/z 346.2) techniques. The methanolic (10%) solution of MAA (50–150 μl) was dissolved in propylene glycol and mixed with hydrated gel (1.5 % of carbopol 934) by using EDTA (0.3%). Eight (F1-F8) formulations were evaluated for their physico-chemical characters. F7 retained its physio-chemical characters for 90 days. Further selected formulation (F7) was evaluated for its gelling strength (GSg), gelling temperature (GT), melting temperature (MT), apparent viscosity (cp), molecular mass (MMS), pH, physical appearance, homogeneity, and spreading diameter (SD). The stability study of the fabricated gel formulation was done as per International Committee on Harmonization guidelines and sunscreen potential was determined by in vitro sunscreen UV method. Findings revealed that GSg (337 ± 1.7 g/cm²), GT (22.8 ± 0.2 °C), cp (71.1 ± 0.2), MMS (424.177 ± 0.7), pH (6.2 ± 0.04), and SD (56 ± 0.2). For in vitro sunscreen potential determination, different concentrations of F7 (50–150 μl) were prepared. Topical application of the F7 displayed UV-A/UV-B photoprotection with SPF 1.13 folds greater then marketed formulation (Lotus herbals UV screen gel). Based on these findings, it was concluded that methanolic extract derived from N. commune contains Porphyra-334 which can be potentially used as photo protective compound in several cosmetic preparations. Development of sunscreen gel from Nostoc commune The current investigation is designed to develop ultraviolet (UV) absorbing MAA (mycosporine amino acid)–loaded topical gel from Nostoc commune to evaluate its UVA and UVB screening potential. LCMS characterization of HPLC-PDA purified MAA from N. commune methanolic extract demonstrated a prominent ion peak of a protonated molecule ([M + H]⁺) at m/z 346.2 [M+H]+ value confirmed the presence of Porphyra-334. Porphyra-334 is a broad-spectrum sun-protective compound evidenced for its potential in blocking UVA and UVB (Bhatia et al. 2010). Prepared sunscreen formulations remain stable for prolonged period and provide broad-spectrum protection against harmful UV range.
Mostrar más [+] Menos [-]