Refinar búsqueda
Resultados 1-10 de 10
1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies
2021
Hani, Younes Mohamed Ismail | Prud’Homme, Sophie Martine | Nuzillard, Jean-Marc | Bonnard, Isabelle | Robert, Christelle | Nott, Katherine | Ronkart, Sébastien | Dedourge-Geffard, Odile | Geffard, Alain
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières “CM” in France, Namur “Nam” and Charleroi “Cr” in Belgium). The aim was to test ¹H-NMR metabolomics for the assessment of water bodies’ quality. The metabolomic approach was combined with a more “classical” one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and ¹H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Mostrar más [+] Menos [-]Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether
2018
Chen, Jie | Li, Kelun | Le, X Chris | Zhu, Lizhong
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography−mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 μg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7–12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%–67.1%) and 19 organic acids (by 7.8%–70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.
Mostrar más [+] Menos [-]1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil
2010
1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-β-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised ∼65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils.
Mostrar más [+] Menos [-]¹H NMR-based metabolomics of time-dependent responses of Eisenia fetida to sub-lethal phenanthrene exposure
2011
Lankadurai, Brian P. | Wolfe, David M. | Simpson, Andre J. | Simpson, Myrna J.
¹H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm² of phenanthrene (1/64th of the LC₅₀) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by ¹H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies.
Mostrar más [+] Menos [-]Effect of Nitrite on the Formation of Trichloronitromethane (TCNM) During Chlorination of Polyhydroxy-Phenols and Sugars
2017
Gan, Guojuan | Qiu, Lin | Wu, Huan | Hong, Huachang | Mazumder, Asit | Pan, Xiangliang | Liang, Yan
Occurrence of halonitromethanes (HNMs) in drinking water has been a concern recently due to the potentially high human health risks of HNMs. Mechanisms of formation of HNMs during disinfection has remained controversial. The objective of this study was to investigate the effects of nitrite on the formation of trichloronitromethane (TCNM), a dominant HNM species occurring in chlorinated water. Polyhydroxy-phenols (hydroquinone, catechol, resorcinol, and phloroglucinol) and sugars (glucose, maltose, and lactose) were compared as surrogates/model compounds of common organic precursors of humic and non-humic substances in natural organic matter, respectively. The results showed that TCNM was not detectable after chlorinated sugars with the addition of nitrite. Upon chlorinating the polyhydroxy-phenols, TCNM formation varied greatly among different compounds, i.e., resorcinol > phloroglucinol > catechol >> hydroquinone. The results demonstrated that TCNM formation in the presence of nitrite was a function of aromaticity as well as the position and number of hydroxyl groups on the benzene rings of a compound, and the TCNM formation potential of humic substances was greater than that of non-humic substances. For catechol, resorcinol, and phloroglucinol, TCNM formation varied greatly with pH but generally remained stable with the increase of reaction time and temperature.
Mostrar más [+] Menos [-]Effects of root exudates on the activation and remediation of cadmium ion in contaminated soils
2020
Chen, Cheng | Li, Zhongbao | Li, Shengjin | Deng, Nanxin | Mei, Ping
To screen out plants with hyperaccumulation of heavy metals and explore the effects of root exudates on the phytoremediation in contaminated soils. The germination rates of five plants including Lolium perenne L. (L. perenne), Sorghum sudanense (Piper) Stapf. (S. sudanense), Pennisetum alopecuroides (L.) Spreng. (P. alopecuroides), Medicago sativa L. (M. sativa), and Trifolium repens L. (T. repens) in different concentrations of cadmium ion solution (0–100 mg/kg) were determined. The growth adaptability of these five plants under conditions of contaminated soils with the above cadmium ion concentrations was also evaluated. S. sudanense and P. alopecuroides had higher germination rates and better growth than the three other plants and were selected as the latter experimental varieties. The activation amounts of cadmium ion in soils were measured using AAS in the presence of three types of root secretions (citric acid, glycine, and maltose) with different concentrations (10–500 mmol/L). The activation amounts decrease in the following order: citric acid > glycine > maltose. The effect of these three root exudates on the removal of cadmium-contaminated soils in combination with S. sudanense and P. alopecuroides was also tested. For S. sudanense and P. alopecuroides, the maximum biomass and removal rate reaches the maximum at 100 mmol/L of citric acid. Conversely, low concentrations (approximately 10–50 mmol/L) of glycine and maltose are more effective for plant growth and phytoremediation. The addition of citric acid at 100 mmol/L and approximately 10–50 mmol/L of glycine and maltose can effectively promote the transfer of cadmium ion from roots to leaves and the accumulation of cadmium ion in leaves.
Mostrar más [+] Menos [-]Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42
2018
Al-Ali, Ameen | Deravel, Jovana | Krier, François | Béchet, Max | Ongena, Marc | Jacques, Philippe
In this work, the behavior in tomato rhizosphere of Bacillus velezensis FZB42 was analyzed taking into account the surfactin production, the use of tomato roots exudate as substrates, and the biofilm formation. B. velezensis FZB42 and B. amyloliquefaciens S499 have a similar capability to colonize tomato rhizosphere. Little difference in this colonization was observed with surfactin non producing B. velezensis FZB42 mutant strains. B. velezensis is able to grow in the presence of root exudate and used preferentially sucrose, maltose, glutamic, and malic acids as carbon sources. A mutant enable to produce exopolysaccharide (EPS⁻) was constructed to demonstrate the main importance of biofilm formation on rhizosphere colonization. This mutant had completely lost its ability to form biofilm whatever the substrate present in the culture medium and was unable to efficiently colonize tomato rhizosphere.
Mostrar más [+] Menos [-]The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat
2017
Zhu, Xuezhu | Wang, Wanqing | Crowley, David E. | Sun, Kai | Hao, Shupeng | Waigi, Michael Gatheru | Gao, Yanzheng
This research was conducted to isolate polycyclic aromatic hydrocarbon-degrading (PAH-degrading) endophytic bacteria and investigate their potential in protecting plants against PAH contamination. Pyrene-degrading endophytic bacteria were isolated from plants grown in PAH-contaminated soil. Among these endophytic bacteria, strain PW7 (Serratia sp.) isolated from Plantago asiatica was selected to investigate the suppression of pyrene accumulation in Triticum aestivum L. In the in vitro tests, strain PW7 degraded 51.2% of the pyrene in the media within 14 days. The optimal biodegradation conditions were pH 7.0, 30 °C, and MS medium supplemented with additional glucose, maltose, sucrose, and peptones. In the in vivo tests, strain PW7 successfully colonized the roots and shoots of inoculated (E⁺) wheat plants, and its colonization decreased pyrene accumulation and pyrene transportation from roots to shoots. Remarkably, the concentration of pyrene in shoots decreased much more than that in roots, suggesting that strain PW7 has the potential for protecting wheat against pyrene contamination and mitigating the threat of pyrene to human health via food consumption.
Mostrar más [+] Menos [-]Comparison of metabolomic responses of earthworms to sub-lethal imidacloprid exposure in contact and soil tests
2019
Dani, Vivek D. | Lankadurai, Brian P. | Nagato, Edward G. | Simpson, Andre J. | Simpson, Myrna J.
Eisenia fetida earthworms were exposed to sub-lethal levels of imidacloprid for 48 h via contact filter paper tests and soil tests. After the exposure, ¹H nuclear magnetic resonance (NMR) metabolomics was used to measure earthworm sub-lethal responses by analyzing the changes in the polar metabolite profile. Maltose, glucose, malate, lactate/threonine, myo-inositol, glutamate, arginine, lysine, tyrosine, leucine, and phenylalanine relative concentrations were altered with imidacloprid exposure in soil. In addition to these metabolites (excluding leucine and phenylalanine), fumarate, ATP, inosine, betaine, scyllo-inositol, glutamine, valine, tryptophan, alanine, tyrosine, and isoleucine relative concentrations shifted with imidacloprid exposure during contact tests. Metabolite changes in E. fetida earthworms exposed to imidacloprid showed a non-linear concentration response and an upregulation in gluconeogenesis. Overall, imidacloprid exposure in soil induces a less pronounced response in metabolites glucose, maltose, fumarate, adenosine-5′-triphosphate (ATP), inosine, scyllo-inositol, lactate/threonine, and tyrosine in comparison to the response observed via contact tests. Thus, our study highlights that tests in soil can result in a different metabolic response in E. fetida and demonstrates the importance of different modes of exposure and the extent of metabolic perturbation in earthworms. Our study also emphasizes the underlying metabolic disruption of earthworms after acute sub-lethal exposure to imidacloprid. These observations should be further examined in different soil types to assess the sub-lethal toxicity of imidacloprid to soil-dwelling earthworms.
Mostrar más [+] Menos [-]Influences of carbon and nitrogen sources and metal ions on the heterotrophic culture of Scenedesmus sp. LX1
2019
He, Yitian | Hong, Yu | Liu, Xiaoya | Zhang, Qing | Liu, Peirui | Wang, Shaoyun
In this study, the influences of organic carbon sources (OCS, including xylose, glucose, maltose, sucrose, and starch) and inorganic and organic nitrogen sources (INS, including ammonia chloride and sodium nitrate; ONS, including arginine, alanine, proline, and valine) and metal ions (including Na⁺, K⁺, Mn²⁺, Zn²⁺ and Cu²⁺) on the growth, lipid accumulation, and nitrogen and phosphorus (N&P) removal capabilities of oleaginous Scenedesmus sp. LX1 under heterotrophic conditions were investigated. The results showed that glucose was the only OCS for Scenedesmus sp. LX1 to grow well with specific growth rate of 0.935 days⁻¹, maximum biomass of 1.72 g L⁻¹, and largest removal rates of N&P and organic carbon reaching 72.228%, 93.034%, and 19.208%, respectively. After 11 days of cultivation, the maximal biomass reached in the group with starch or glucose while maximal lipid and triacylglycerol (TAG) yields reached in the groups with maltose and sucrose, respectively. Sodium nitrate was best nitrogen source as the largest algal density, maximal yields of lipids and TAGs, and highest N&P removal rates reached up to 1.105 × 10⁷ cells·mL⁻¹, 196.70 mg L⁻¹, 5.19 mg L⁻¹, 89.61% and 100%, respectively. Scenedesmus sp. LX1 was found to have great tolerance to Na⁺, K⁺, Mn²⁺, and Zn²⁺ while 0.5 mg L⁻¹ Cu²⁺ had a strong inhibition on growth and N&P removal rate of Scenedesmus sp. LX1. Concentration increasing of five metal ions all caused the yield increases of microalgal lipid and TAGs. Graphical abstract
Mostrar más [+] Menos [-]