Refinar búsqueda
Resultados 1-5 de 5
Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii
2020
Cosio, Claudia | Renault, David
Macrophytes are known to bioaccumulate metals, but a thorough understanding of tolerance strategies and molecular impact of metals in aquatic plants is still lacking. The present study aimed to compare Hg and Cd effects in a representative macrophyte, Elodea nuttallii using physiological endpoints and metabolite profiles in shoots and cytosol.Exposure 24 h to methyl-Hg (30 ng L⁻¹), inorganic Hg (70 ng L⁻¹) and Cd (280 μg L⁻¹) did not affect photosynthesis, or antioxidant enzymes despite the significant accumulation of metals, confirming a sublethal stress level. In shoots, Cd resulted in a higher level of regulation of metabolites than MeHg, while MeHg resulted in the largest number of regulated metabolites and IHg treatment regulated no metabolites significantly. In cytosol, Cd regulated more metabolites than IHg and only arginine, histidine and mannose were reduced by MeHg exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of data suggested that exposure to MeHg resulted in biochemical changes including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, nitrogen metabolism, arginine and proline metabolism, cyanoamino acid metabolism, while the treatment of Cd stress caused significant variations in aminoacyl-tRNA biosynthesis and branched-chain amino acids pathways. Data supports an impact of MeHg on N homeostasis, while Cd resulted in an osmotic stress-like pattern and IHg had a low impact. Marked differences in the responses to MeHg and IHg exposure were evidenced, supporting different molecular toxicity pathways and main impact of MeHg on non-soluble compartment, while main impact of IHg was on soluble compartment. Metabolomics was used for the first time in this species and proved to be very useful to confirm and complement recent knowledge gained by transcriptomics and proteomics, highlighting the high interest of multi-omics approaches to identify early impact of environmental pollution.
Mostrar más [+] Menos [-]Sustainable use of agro-industrial wastes as potential feedstocks for exopolysaccharide production by selected Halomonas strains
2022
Large quantities of waste biomass are generated annually worldwide by many industries and are vastly underutilized. However, these wastes contain sugars and other dissolved organic matter and therefore can be exploited to produce microbial biopolymers. In this study, four selected Halomonas strains, namely, Halomonas caseinilytica K1, Halomonas elongata K4, Halomonas smyrnensis S3, and Halomonas halophila S4, were investigated for the production of exopolysaccharides (EPS) using low-cost agro-industrial wastes as the sole carbon source: cheese whey, grape pomace, and glycerol. Interestingly, both yield and monosaccharide composition of EPS were affected by the carbon source. Glucose, mannose, galactose, and rhamnose were the predominant monomers, but their relative molar ratio was different. Similarly, the average molecular weight of the synthesized EPS was affected, ranging from 54.5 to 4480 kDa. The highest EPS concentration (446 mg/L) was obtained for H. caseinilytica K1 grown on cheese whey that produced an EPS composed mostly of galactose, rhamnose, glucose, and mannose, with lower contents of galacturonic acid, ribose, and arabinose and with a molecular weight of 54.5 kDa. Henceforth, the ability of Halomonas strains to use cost-effective substrates, especially cheese whey, is a promising approach for the production of EPS with distinct physicochemical properties suitable for various applications.
Mostrar más [+] Menos [-]Comparative analysis of cadmium-induced toxicity and survival responses in the wolf spider Pirata subpiraticus under low-temperature treatment
2022
Lv, Bo | Zhuo, Jun-zhe | Peng, Yuan-de | Wang, Zhi
Cadmium (Cd) pollution is a serious heavy metal pollution in paddy fields, but its effect and underlying mechanism on soil arthropod overwintering and cold resistance are still unclear. In the present study, adult females of the wolf spider Pirata subpiraticus exposed to Cd stress underwent a simulated temperature process (25℃ → 16℃ → 8℃ → 4℃). The mortality rate and content of nutrients in the Cd-treated spiders were dramatically elevated after low-temperature treatment compared to those in the Cd-free control spiders under the same temperature condition. To uncover the putative modulatory mechanism of Cd on cold tolerance in P. subpiraticus, we employed an in-depth RNA sequencing analysis and yielded a total of 888 differentially expressed genes (DEGs). Besides, we characterized genes that participate in multiple cryoprotectant syntheses, including arginine, cysteine, glucose, glycerol, heat shock protein, and mannose. The enrichment analyses found that most of the DEGs involved in biological processes and pathways were related to carbohydrate, lipid, and protein metabolism. Notably, ten Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as starch and sucrose metabolism, arachidonic acid metabolism, amino acid metabolism, mineral absorption, and vitamin digestion and absorption, were distinctively enriched with downregulated genes. Meanwhile, we also identified that seven DEGs might inhibit the KEGG pathway of ovarian steroidogenesis and potentially cripple ovarian function and fecundity in the spider. The decreased egg sac weight, number of hatched spiderlings, and vitellin concentration further supported the view that Cd exposure vitiates the overwintering spider’s fecundity. Collectively, the comparative analysis provides a novel perspective regarding the survival response and fecundity on the cold tolerance of spiders under Cd stress and offers a profound insight for evaluating Cd-induced toxicity on overwintering arthropods.
Mostrar más [+] Menos [-]Flocculation of coal washing wastewater using polysaccharide produced by Paenibacillus mucilaginosus WL412
2017
Xu, Haiyang | Li, Jing | Fu, Renjie | Cheng, Rui | Wang, Shiming | Zhang, Jianfa
Natural polymeric flocculant shows effectiveness in wastewater treatment without increasing the environmental burden. The extracellular substance produced by Paenibacillus mucilaginosus WL412 was identified as an anionic polysaccharide composed of five types of monosaccharides, namely, D-mannose, D-glucuronic acid, D-glucose, D-galactose, and L-fucose with the molar ratio of 2.8:1.2:2.0:1.8:0.8. The purified polysaccharide, POS412, presented high efficiency in flocculating coal washing wastewater and kaolin suspension without the assistance of inorganic coagulants. Addition of POS412 resulted in the polymer bridging phenomenon in suspensions, which was observed by means of scanning electron microscopic imaging, size grading, and ζ-potential analyses. More importantly, POS412 exhibited satisfactory stability after storage in various conditions. The flocculation rate was more than 91% for coal washing wastewater when POS412 was stored for 264 h in the wide range of pH (3–11) and temperature (20–50 °C) before use. Results indicate that POS412 is a competent bioflocculant for wastewater treatment.
Mostrar más [+] Menos [-]Characterization of fibrolytic and lipid accumulating fungi isolated from fresh cattle feces
2014
Liu, Yupei | Tan, Hongming | Deng, Qingli | Cao, Lixiang
To characterize coprophilous fungi for converting lignocellulose into lipids, four fungal strains utilizing cellulose microcrystalline and xylan were screened. The fungi were identified as Cladosporium sp. F1, Circinella sp. F6, Mycocladus sp. F49, and Byssochlamys sp. F52 based on the ITS1-5.8S-ITS2 sequence similarity. The strain F52 accumulated 336.0 mg/L reducing sugars on cottonseed shells treated with ethanol. The combination of F1 + F52 increased the reducing sugar accumulating rates. However, the activities of avicelase and xylanase were not correlated with the reducing sugars accumulated by the test strains. Strains F6 and F52 produced higher cellular lipids (above 530.7 mg/L) than other strains. However, the strain F52 could produce more cellular lipids with xylose and mannose as the sole carbon sources. The results indicated that the reducing sugar contents accumulated by the different strains were influenced by the fungal taxa and ligocellulosic types. With fibrolytic and lipid accumulating activities, diverse fungi harboring in herbivore feces need to be further characterized.
Mostrar más [+] Menos [-]