Refinar búsqueda
Resultados 1-10 de 14
Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides
2015
Romdhane, Sana | Devers-Lamrani, Marion | Martin-Laurent, Fabrice | Calvayrac, Christophe | Rocaboy-Faquet, Emilie | Riboul, David | Cooper, Jean-François | Barthelmebs, Lise | Laboratoire de Chimie des Biomolécules et de l'Environnement (LCBE) ; Université Montpellier 1 (UM1)-Université de Perpignan Via Domitia (UPVD) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) ; Observatoire océanologique de Banyuls (OOB) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-PIERRE FABRE-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Génie Chimique (LGC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)
International audience | In this study, a bacterial strain able to use sulcotrione,a β-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce β-triketone degrading capacity,suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrademesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione.Mesotrione degradation pathway leads to the accumulation of-methylsulfonyl-2-nitrobenzoic acid(MNBA) and 2-amino-4 methylsulfonylbenzoic acid(AMBA), two well-known metabolites of this herbicide. Along with the dissipation of β-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase(HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two β-triketones.
Mostrar más [+] Menos [-]Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides
2015
Romdhane, Sana | Devers-Lamrani, Marion | Martin-Laurent, Fabrice | Calvayrac, Christophe | Rocaboy-Faquet, Emilie | Riboul, David | Cooper, Jean-François | Barthelmebs, Lise | Laboratoire de Chimie des Biomolécules et de l'Environnement (LCBE) ; Université Montpellier 1 (UM1)-Université de Perpignan Via Domitia (UPVD) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) ; Observatoire océanologique de Banyuls (OOB) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-PIERRE FABRE-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Génie Chimique (LGC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)
International audience | In this study, a bacterial strain able to use sulcotrione,a β-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce β-triketone degrading capacity,suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrademesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione.Mesotrione degradation pathway leads to the accumulation of-methylsulfonyl-2-nitrobenzoic acid(MNBA) and 2-amino-4 methylsulfonylbenzoic acid(AMBA), two well-known metabolites of this herbicide. Along with the dissipation of β-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase(HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two β-triketones.
Mostrar más [+] Menos [-]Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field
2017
Chrétien, François | Giroux, Isabelle | Thériault, Georges | Gagnon, Patrick | Corriveau, Julie
With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after application but rapidly resumed below these limits.
Mostrar más [+] Menos [-]How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure
2015
Bardot, Corinne | Besse-Hoggan, Pascale | Carles, Louis | Le Gall, Morgane | Clary, Guilhem | Chafey, Philippe | Federici, Christian | Broussard, Cédric | Batisson, Isabelle
Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
Mostrar más [+] Menos [-]Isolation and characterization of mesotrione-degrading Bacillus sp. from soil
2009
Batisson, Isabelle | Crouzet, Olivier | Besse-Hoggan, Pascale | Sancelme, Martine | Mangot, Jean-François | Mallet, Clarisse | Bohatier, Jacques
Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE). The TTGE fingerprints revealed that mesotrione had an impact on bacterial community structure only at its highest concentrations and showed mesotrione-sensitive and mesotrione-adapted strains. Two adapted strains, identified as Bacillus sp. and Arthrobacter sp., were isolated by colony hybridization methods. Biodegradation assays showed that only the Bacillus sp. strain was able to completely and rapidly biotransform mesotrione. Among several metabolites formed, 2-amino-4-methylsulfonylbenzoic acid (AMBA) accumulated in the medium. Although sulcotrione has a chemical structure closely resembling that of mesotrione, the isolates were unable to degrade it. A Bacillus sp. strain isolated from soil was able to completely and rapidly biotransform the triketone herbicide mesotrione.
Mostrar más [+] Menos [-]Responses of Limagne “Clay/Organic Matter-Rich” Soil Microbial Communities to Realistic Formulated Herbicide Mixtures, Including S-Metolachlor, Mesotrione, and Nicosulfuron
2015
Joly, Pierre | Bonnemoy, Frédérique | Besse-Hoggan, Pascale | Perrière, Fanny | Crouzet, Olivier | Cheviron, Nathalie | Mallet, Clarisse
Soil is a primary resource used by mankind to ensure its needs mainly through agriculture. Its sustainability is regulated by the indigenous organisms it contains such as microorganisms. Current agricultural practices employ mixtures of pesticides to ensure the crops yield and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of microorganisms to pesticide mixtures are scarce. In this context, we designed a 3-month microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur®), mesotrione (Callisto®), and nicosulfuron (Milagro®) on the abundance, the diversity, and the activities of microorganisms from a “clay/organic matter-rich” soil, with a particular attention given to N-cycle communities. These communities appeared to be quite resistant to realistic mixtures even if transient effects occurred on the N-cycle-related communities with an increase of ammonification and an inhibition of nitrification as a short-term effect, followed by an increase of denitrification and an accumulation of nitrates. As nitrates are known to be highly leachable with a strong pollution potential, intensive studies should be carried out at field level to conclude on this potential accumulation and its consequences. Moreover, these data now need to be compared with other agricultural soils receiving these herbicide mixtures in order to bring general conclusion on such practices.
Mostrar más [+] Menos [-]Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor
2017
Borowik, Agata | Wyszkowska, Jadwiga | Kucharski, Jan | Baćmaga, Małgorzata | Tomkiel, Monika
The research objective has been to evaluate the effect, unexplored yet, of a mixture of three active ingredients of the herbicide Lumax 537.5 SE: terbuthylazine (T), mesotrione (M), and S-metolachlor (S) on counts of soil microorganisms, structure of microbial communities, activity of soil enzymes as well as the growth and development of maize. The research was based on a pot experiment established on sandy soil with pHKCₗ 7.0. The herbicide was applied to soil once, in the form of liquid emulsion dosed as follows: 0.67, 13.4, 26.9, 53.8, 108, 215, and 430 mg kg⁻¹ of soil, converted per active substance (M + T + S). The control sample consisted of soil untreated with herbicide. The results showed that the mixture of the above active substances caused changes in values of the colony development (CD) indices of organotrophic bacteria, actinomycetes, and fungi and ecophysiological diversity (EP) indices of fungi. Changes in the ecophysiological diversity index of organotrophic bacteria and actinomycetes were small. The M + T + S mixture was a strong inhibitor of dehydrogenases, to a less degree catalase, urease, β-glucosidase, and arylsulfatase, while being a weak inhibitor of phosphatases. The actual impact was correlated with the dosage. The M + T + S mixture inhibited the growth and development of maize. The herbicide Lumax 537.5 SE should be applied strictly in line with the regime that defines its optimum dosage. Should its application adhere to the manufacturer’s instructions, the herbicide would not cause any serious disturbance in soil homeostasis. However, its excessive quantities (from 13.442 to 430.144 mg kg⁻¹ DM of soil) proved to be harmful to the soil environment.
Mostrar más [+] Menos [-]Quantification of the fate of mesotrione applied alone or in a herbicide mixture in two Brazilian arable soils
2017
Mendes, Kassio Ferreira | Martins, Bianca Assis Barbosa | dos Reis, Marcelo Rodrigues | Pimpinato, Rodrigo Floriano | Tornisielo, Valdemar Luiz
The effects of mesotrione, S-metolachlor, and terbuthylazine, applied in mixture, on soil biodegradation remain insufficiently researched. However, herbicide mixtures have been a common practice in agricultural systems in the last years. Understanding the fate of soil-applied herbicides may help on planning weed management tactics towards more sustainable and efficient weed control. Therefore, this study evaluated the fate of mesotrione alone and in mixture with S-metolachlor and terbuthylazine when applied to two contrasting arable Brazilian soils. Mineralization and degradation experiments were conducted using ¹⁴C-mesotrione alone or in mixture. From the 49-day laboratory incubation data, increased mineralization half-life of mesotrione was observed for the mixture of herbicides, ranging from a 4-day increase for the sandy loam soil to a 1-day increase in the sandy clay texture soils. Mesotrione degradation rate had a twofold increase in the sandy loam compared to the sandy clay soil. Two metabolites can be identified from mesotrione degradation, 4-methyl-sulfonyl-2-nitrobenzoic acid (MNBA) and 2-amino-4-methylsulfonyl benzoic acid (AMBA). Indices for the score of ubiquity in groundwater indicated mesotrione possesses leaching potential for both soils. Applying mesotrione alone or in mixture did not influence the amount of bound residues from mesotrione. However, mesotrione degradation rate was influenced by soil texture regardless if applied alone or in mixture. Mesotrione biotransformation was relatively quick, indicating that this herbicide has low persistence and, consequently, low residual effect on crops and weeds when present in similar soils to this present study.
Mostrar más [+] Menos [-]Extraction procedures for the study of phytotoxicity and degradation processes of selected triketones in a water ecosystem
2014
Barchanska, Hanna | Kowalska, Anna | Poloczek, Barbara
Simple and effective extraction methods based on matrix solid-phase dispersion (MSPD), dispersive liquid–liquid microextraction (DLLME), and solid-phase extraction (SPE) coupled with high-performance liquid chromatography with diode array detector (HPLC-DAD) were developed to determine triketone herbicides—sulcotrione (SUL), mesotrione (MES), tembotrione (TEMB), and their degradation products—in plant tissues and water samples. The extraction procedures were employed to enable quantification of the accumulation of selected triketone herbicides and their degradation products in a model aquatic plant, Egeria densa. To obtain comprehensive information about the triketones' influence on an aquatic plant, changes in chlorophyll concentration in plants exposed to these triketones were monitored. The average recovery ranged from 58 to 115 % (coefficients of variation 7–12 %) for plant tissues and from 52 to 96 % (coefficients of variation 8–20 %) for water samples. The limit of detection (LOD) for the MSPD–HPLC-DAD procedure was in the range of 0.06–0.23 μg/g, whereas for DLLME–HPLC-DAD and SPE–HPLC-DAD, LOD was in the range of 0.06–0.26 μg/mL. Symptoms of the phytotoxicity of sulcotrione, mesotrione, tembotrione, and their degradation products (decrease of chlorophyll concentration in plant sprouts) were observed for E. densa cultivated in water with herbicide concentrations of 100 μg/L. Moreover, the tembotrione degradation product exhibited a high level of accumulation and low metabolism in plant tissues in comparison to the other triketones and their degradation products.
Mostrar más [+] Menos [-]Degradation and mineralization of sulcotrione and mesotrione in aqueous medium by the electro-Fenton process: a kinetic study
2012
Murati, Minir | Oturan, Nihal | Aaron, Jean-Jacques | Dirany, Ahmad | Tassin, Bruno | Zdravkovski, Z. | Oturan, Mehmet A.
INTRODUCTION: The degradation and mineralization of two triketone (TRK) herbicides, including sulcotrione and mesotrione, by the electro-Fenton process (electro-Fenton using Pt anode (EF-Pt), electro-Fenton with BDD anode (EF-BDD) and anodic oxidation with BDD anode) were investigated in acidic aqueous medium. METHODS: The reactivity of both herbicides toward hydroxyl radicals was found to depend on the electron-withdrawing effect of the aromatic chlorine or nitro substituents. The degradation of sulcotrione and mesotrione obeyed apparent first-order reaction kinetics, and their absolute rate constants with hydroxyl radicals at pH 3.0 were determined by the competitive kinetics method. RESULTS AND DISCUSSION: The hydroxylation absolute rate constant (k abs) values of both TRK herbicides ranged from 8.20 × 108 (sulcotrione) to 1.01 × 109 (mesotrione) L mol−1 s−1, whereas those of the TRK main cyclic or aromatic by-products, namely cyclohexane 1,3-dione , (2-chloro-4-methylsulphonyl) benzoic acid and 4-(methylsulphonyl)-2-nitrobenzoic acid, comprised between 5.90 × 108 and 3.29 × 109 L mol−1 s−1. The efficiency of mineralization of aqueous solutions of both TRK herbicides was evaluated in terms of total organic carbon removal. Mineralization yields of about 97–98% were reached in optimal conditions for a 6-h electro-Fenton treatment time. CONCLUSIONS: The mineralization process steps involved the oxidative opening of the aromatic or cyclic TRK by-products, leading to the formation of short-chain carboxylic acids, and, then, of carbon dioxide and inorganic ions.
Mostrar más [+] Menos [-]