Refinar búsqueda
Resultados 1-10 de 445
Role of Methanotrophs in Methane Oxidation from Municipal Solid Waste Dumpsites in Tropical Countries Texto completo
2024
Srivastava, Tanmay | Srivastava, Vartika | Manukonda, Suresh Kumar
Municipal Solid Waste (MSW) dumpsites are one of the major source of methane (CH4) emissions due anaerobic degradation of organic matter content in the waste. Control technologies are available to reduce these emissions, but they are costly and their application on existing sites is complex. Moreover, tropical climate is responsible for rapid degradation of organic matter in open dumps leading to substantial CH4 emissions mainly due to hot and humid conditions amongst other factors. Methanotrophs are bacteria capable of oxidizing CH4 into carbon dioxide (CO2) by virtue of methane monooxygenase enzyme. Various cover materials can be utilized to enhance methane oxidation (MO) ability of these organisms by providing favorable conditions thus converting methane from unmanaged dumpsites into CO2 which has lower global warming potential. Hence their application shows great potential for contributing towards meeting the greenhouse gas (GHG) reduction goals. This review focuses on the attempts to attenuate CH4 emissions by different biocover systems and the current scenario while giving special emphasis to tropical conditions.
Mostrar más [+] Menos [-]Application of the Triangular Model in quantifying landfill gas emission from municipal solid wastes Texto completo
2019
Yusuf, R. O. | Adeniran, J. A. | Sonibare, J. A. | Noor, Z. Z.
Municipal solid waste landfills are significant parts of anthropogenic greenhouse gas emissions. The emission of significant amount of landfill gas has generated considerable interest in quantifying such emissions. The chemical composition of the organic constituents and potential amount of landfill gas that can be derived from the waste were determined. The chemical formulae for the rapidly biodegradable waste (RBW) and slowly biodegradable waste (SBW) were determined as C39H62O27N and C36H56O20N, respectively. The triangular method was used to calculate landfill gas obtainable from rapidly biodegradable waste over a 5-year period and for slowly biodegradable waste over a 15-year period. A plot was obtained for a landfill life span of 20 years. The volume of methane and carbon dioxide from RBW were 12.60 m3 and 11.76 m3 respectively while those from SBW were 6.60 m3 and 5.48 m3 respectively at STP. For the initial deposit of 2002 the highest landfill gas emission rate occurred in 2007 at 0.2829 Gg/yr with an average cumulative emission of 0.3142 Gg while for a landfill closed after five years the highest landfill gas emission rate was in 2010 at 1.2804 Gg/yr with an average cumulative emission of 1.5679 Gg while this cumulative emission will start declining by the year 2029.
Mostrar más [+] Menos [-]Estimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City) Texto completo
2017
Ghasemzade, Reza | Pazoki, Maryam
One of the major factors, contributing to the emission of greenhouse gases in the environment is generation of pollutant gases in municipal landfills. As for the design and building of a gas collecting system, it is necessary to properly estimate the amount and type of the landfill emissions. By means of LandGEM model, this study predicts the amount and type of the landfill gases, produced for 30 years (from 2016 to 2045) in Jiroft. Results show that in 2045, 3, 324, 274 tons of waste will be disposed in municipal landfills of Jiroft and the total amount of produced gas, methane, carbon dioxide, and non-methane organic compounds will be 32, 994, 8813, 24,181, and 378.8 tons/year, respectively. Furthermore, the rate of landfill gas emissions from 2016 to 2045 has been achieved. Maximum concentrations of methane, carbon dioxide and non-methane organic compounds in 2045, in 700 meters from landfill, will be 40, 590, 112, 700, and 1765 tons/m3 respectively. Based on the results, obtained from this article, landfill pollutants such as CH4, CO2, and NMOC's can reach up to 15 kilometers from landfill, thus social places should be located farther than 15 kilometers from the landfill site of Jiroft. The results, obtained in this paper, can be used to identify the effect of Jiroft landfill in global emission of greenhouse gases and proper management of the landfill gas not only reduces greenhouse gas emissions, diminishing their effects on public health, but can be also used as a sustainable energy source.
Mostrar más [+] Menos [-]Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay Texto completo
2022
Zhang, Lei | He, Kai | Wang, Tong | Liu, Cheng | An, Yanfei | Zhong, Jicheng
Freshwater ecosystems play a key role in global greenhouse gas estimations and carbon budgets, and algal blooms are widespread owing to intensified anthropological activities. However, little is known about greenhouse gas dynamics in freshwater experiencing frequent algal blooms. Therefore, to explore the spatial and temporal variations in methane (CH₄) and carbon dioxide (CO₂), seasonal field investigations were performed in the Northwest Bay of Lake Chaohu (China), where there are frequent algal blooms. From the highest site in the nearshore to the pelagic zones, the CH₄ concentration in water decreased by at least 80%, and this dynamic was most obvious in warm seasons when algal blooms occurred. CH₄ was 2–3 orders of magnitude higher than the saturated concentration, with the highest in spring, which makes this bay a constant source of CH₄. However, unlike CH₄, CO₂ did not change substantially, and river mouths acted as hotspots for CO₂ in most situations. The highest CO₂ concentration appeared in winter and was saturated, whereas at other times, CO₂ was unsaturated and acted as a sink. The intensive photosynthesis of rich algae decreased the CO₂ in the water and increased dissolved oxygen and pH. The increase in CH₄ in the bay was attributed to the mineralization of autochthonous organic carbon. These findings suggest that frequent algal blooms will greatly absorb more CO₂ from atmosphere and increasingly release CH₄, therefore, the contribution of the bay to the lake's CH₄ emissions and carbon budget will be major even though it is small. The results of this study will be the same to other shallow lakes with frequent algal bloom, making lakes a more important part of the carbon budget and greenhouse gases emission.
Mostrar más [+] Menos [-]Effect of micro-aerobic conditions based on semipermeable membrane-covered on greenhouse gas emissions and bacterial community during dairy manure storage at industrial scale Texto completo
2022
Fang, Zhen | Zhou, Ling | Liu, Ya | Xiong, Jinpeng | Su, Ya | Lan, Zefeng | Han, Lujia | Huang, Guangqun
This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.
Mostrar más [+] Menos [-]Restored riverine wetlands in a headwater stream can simultaneously behave as sinks of N2O and hotspots of CH4 production Texto completo
2021
Zhang, Wangshou | Li, Hengpeng | Pueppke, Steven G. | Pang, Jiaping
Wetlands can improve water quality, but they are also recognized as important sources of greenhouse gases (GHG) such as nitrous oxide (N₂O) and methane (CH₄). Emissions of these gases from wetland ecosystems, especially those in headwaters, are poorly understood. Here, we determined monthly concentrations of dissolved N₂O and CH₄ in a headwater stream of the Taihu Lake basin of China that contains both wetland and non-wetland reaches. Daily GHG dynamics in the wetland reach were also investigated. Riverine N₂O and CH₄ concentrations generally varied within 10–30 nmol L⁻¹ and 0.1–1.5 μmol L⁻¹, respectively. CH₄ saturation levels in the wetland reach were about seven times higher than those in the non-wetland reach, but there was no difference in N₂O saturation. In the wetland reach, saturation levels of CH₄ peaked in July, coincident with a dip in N₂O saturation to levels below its saturated solubility. This underscores that hotspots of CH₄ production and sinks for N₂O can occur occasionally in wetlands in mid-summer, when vegetative growth and microbial activities are high. Diurnal measurements indicated that CH₄ saturation in water flows passing through the wetlands from midnight through the early morning can surge to levels 10 times higher than those detected at other times of the day. Simultaneously, saturation levels of N₂O decreased by 75%, indicating a net consumption of N₂O. Changes in nutrient supply determined by upstream inflows, as well as dissolved oxygen, pH, and other environmental factors mediated by the wetlands, correlate with the differentiated behavior of N₂O and CH₄ production in wetlands. Additional work will be necessary to confirm the roles of these factors in regulating GHG emissions in riverine wetlands.
Mostrar más [+] Menos [-]A comparison of light-duty vehicles' high emitters fractions obtained from an emission remote sensing campaign and emission inspection program for policy recommendation Texto completo
2021
Hassani, Amin | Safavi, Seyed Reza | Hosseini, Vahid
Urban transportation is one of the leading causes of air pollution in big cities. In-use emissions of vehicles are higher than the emission control certification levels. The current study uses a roadside remote sensing emission monitoring campaign to investigate (a) fraction of high emitters in the light-duty vehicle (LDV) fleet and their contributions to the total emissions, (b) emission inspection (I/M) programs' effectiveness, and (c) alternate fuel (natural gas) encouragement policy. LDVs consist of passenger or freight transport vehicles with four wheels equivalent to classes M1 and N1 of European union vehicle classifications. The motivation is to assess the current emission inspection program's success rate and study the impact of the increased natural gas vehicle market share policy. It is also meant to present and validate remote sensing as a possible backup method to the current I/M program.The emission remote sensing campaign was conducted to measure emissions of CO, HC, and NO of the LDV fleet. Fleet age, engine size, and fuel type (gasoline or natural gas) were extracted and correlated with emissions. It was found that CO and HC emissions are five times higher for cars more than fifteen years old of age compared to those less than five years old. Analyses of high-emitters showed that almost 20% of the fleet were high-emitters and responsible for roughly half of CO, HC, and NO emissions.The correlation between the I/M program and the remote sensing to identify high-emitters was weak. Which indicates the need for an improved I/M program. It shows that even a limited remote sensing campaign is beneficial as a complementary monitoring tool to the I/M program. The study showed the same fraction of high-emitters in natural gas (methane) vehicles, despite the national policies to increase natural gas vehicle fraction in the market for reduced emissions.
Mostrar más [+] Menos [-]Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system Texto completo
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
Mostrar más [+] Menos [-]Eco-friendly yield-scaled global warming potential assists to determine the right rate of nitrogen in rice system: A systematic literature review Texto completo
2021
Islam Bhuiyan, Mohammad Saiful | Rahamāna, Ājijura | Kim, Gil Won | Das, Suvendu | Kim, Pil Joo
Rice paddies are one of the largest greenhouse gases (GHGs) facilitators that are predominantly regulated by nitrogen (N) fertilization. Optimization of N uses based on the yield has been tried a long since, however, the improvement of the state-of-the-art technologies and the stiffness of global warming need to readjust N rate. Albeit, few individual studies started to, herein attempted as a systematic review to generalize the optimal N rate that minimizes global warming potential (GWP) concurrently provides sufficient yield in the rice system. To satisfy mounted food demand with inadequate land & less environmental impact, GHGs emissions are increasingly evaluated as yield-scaled basis. This systematic review (20 published studies consisting of 21 study sites and 190 observations) aimed to test the hypothesis that the lowest yield-scaled GWP would provide the minimum GWP of CH₄ and N₂O emissions from rice system at near optimal yields. Results revealed that there was a strong polynomial quadratic relationship between CH₄ emissions and N rate and strong positive correlation between N₂O emissions and N rate. Compared to control the low N dose emitted less (23%) CH₄ whereas high N dose emitted higher (63%) CH₄ emission. The highest N₂O emission observed at moderated N level. In total GWP, about 96% and 4%, GHG was emitted as CH₄ and N₂O, respectively. The mean GWP of CH₄ and N₂O emissions from rice was 5758 kg CO₂ eq ha⁻¹. The least yield-scaled GWP (0.7565 (kg CO₂ eq. ha⁻¹)) was recorded at 190 kg N ha⁻¹ that provided the near utmost yield. This dose could be a suitable dose in midseason drainage managed rice systems especially in tropical and subtropical climatic conditions. This yield-scaled GWP supports the concept of win–win for food security and environmental aspects through balancing between viable rice productivity and maintaining convincing greenhouse gases.
Mostrar más [+] Menos [-]Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture Texto completo
2021
Sales Morais, Naassom Wagner | Coelho, Milena Maciel Holanda | Silva, Amanda de Sousa e | Silva, Francisco Schiavon Souza | Ferreira, Tasso Jorge Tavares | Pereira, Erlon Lopes | dos Santos, André Bezerra
Methane (CH₄) production from anaerobic digestion of solid and liquid agro-industrial wastes is an attractive strategy to meet the growing need for renewable energy sources and promote environmentally appropriate disposal of organic wastes. This work aimed at determining the CH₄ production potential of six agro-industrial wastewaters (AWW), evaluating the most promising for methanization purposes. It also aims to provide kinetic parameters and stoichiometric coefficients of CH₄ production and define which kinetic models are most suitable for simulating the CH₄ production of the evaluated substrates. The AWW studied were swine wastewater (SW), slaughterhouse wastewater (SHW), dairy wastewater (DW), brewery wastewater (BW), fruit processing wastewater (FPW), and residual glycerol (RG) of biodiesel production. RG was the substrate that showed the highest methanization potential. Exponential kinetic models can be efficiently applied for describing CH₄ production of more soluble substrates. On the other hand, logistic models were more suitable to predict the CH₄ production of more complex substrates.
Mostrar más [+] Menos [-]