Refinar búsqueda
Resultados 1-10 de 23
Survival outcomes of rehabilitated riverine turtles following a freshwater diluted bitumen oil spill
2022
Otten, Joshua G. | Williams, Lisa | Refsnider, Jeanine M.
Rehabilitation is often used to mitigate adverse effects of oil spills on wildlife. With an increase in production of alternatives to conventional crude oil such as diluted bitumen (dilbit), emergency spill responders and wildlife rehabilitators need information regarding the health and survival of free-ranging vertebrates exposed to dilbit under natural conditions. In 2010, one of the largest freshwater oil spills in the United States occurred in the Kalamazoo River in Michigan, when over 3.2 million liters of spilled dilbit impacted 56 km of riverine habitat. During 2010 and 2011 cleanup efforts, thousands of northern map turtles (Graptemys geographica) were captured from oiled stretches of the river, cleaned, rehabilitated, and released. We conducted extensive mark-recapture surveys in 2010, 2011, and 2018–2021, and used this dataset to evaluate the monthly survival probability of turtles 1–14 months post-spill and 8–11 years post-spill based on whether turtles were temporarily rehabilitated and released, overwintered in captivity and then released, or were released without rehabilitation. We found that rehabilitated or overwintered turtles had a higher probability of survival 1–14 months post-spill than non-rehabilitated turtles; however, 8–11 years post-spill the among-group differences in monthly survival probability had become negligible. Additionally, following the oil spill in 2010, nearly 6% of northern map turtles were recovered dead, died during rehabilitation, or suffered injuries that precluded release back into the wild. Our results demonstrate that exposure to dilbit in free ranging turtles causes direct mortality, while effort spent on the capture and rehabilitation of oiled freshwater turtles is important as it increases monthly survival 1–14 months post-spill.
Mostrar más [+] Menos [-]Sequestration of microfibers and other microplastics by green algae, Cladophora, in the US Great Lakes
2021
Peller, Julie | Nevers, Meredith B. | Byappanahalli, Muruleedhara | Nelson, Cassie | Ganesh Babu, Bharath | Evans, Mary Anne | Kostelnik, Eddie | Keller, Morgan | Johnston, Jenna | Shidler, Sarah
Daunting amounts of microplastics are present in surface waters worldwide. A main category of microplastics is synthetic microfibers, which originate from textiles. These microplastics are generated and released in laundering and are discharged by wastewater treatment plants or enter surface waters from other sources. The polymers that constitute many common synthetic microfibers are mostly denser than water, and eventually settle out in aquatic environments. The interaction of these microfibers with submerged aquatic vegetation has not been thoroughly investigated but is potentially an important aquatic sink in surface waters. In the Laurentian Great Lakes, prolific growth of macrophytic Cladophora creates submerged biomass with a large amount of surface area and the potential to collect and concentrate microplastics. To determine the number of synthetic microfibers in Great Lakes Cladophora, samples were collected from Lakes Erie and Michigan at multiple depths in the spring and summer of 2018. After rinsing and processing the algae, associated synthetic microfibers were quantified. The average loads of synthetic microfibers determined from the Lake Erie and Lake Michigan samples were 32,000 per kg (dry weight (dw)) and 34,000 per kg (dw), respectively, 2–4 orders of magnitude greater than loads previously reported in water and sediment. To further explore this sequestration of microplastics, fresh and aged Cladophora were mixed with aqueous mixtures of microfibers or microplastic in the laboratory to simulate pollution events. Microscopic analyses indicated that fresh Cladophora algae readily interacted with microplastics via adsorptive forces and physical entanglement. These interactions mostly cease upon algal senescence, with an expected release of microplastics in benthic sediments. Collectively, these findings suggest that synthetic microfibers are widespread in Cladophora algae and the affinity between microplastics and Cladophora may offer insights for removing microplastic pollution.Macroalgae in the Laurentian Great Lakes contain high loads of synthetic microfibers, both entangled and adsorbed, which likely account for an important fraction of microplastics in these surface waters.
Mostrar más [+] Menos [-]Discovery of an arsenic and mercury co-elevation in the Midwest United States using reference laboratory data
2019
Day, Patrick L. | Nelson, Erik J. | Bluhm, Amy M. | Wood-Wentz, Christina M. | Jannetto, Paul J.
This study aimed to determine if there is a co-elevation of human blood arsenic and mercury levels in the Midwestern population of the United States (U.S.) and to determine any geographical patterns and variation of arsenic and mercury that may exist in Michigan. 58,800 blood specimens along with associated demographic/geographic data from the contiguous United States were reviewed. Univariate and multivariable logistic regression were used to analyze demographic/geographic variables associated with elevated arsenic concentrations. Furthermore, blood data from patients in Michigan were aggregated to the ZIP code tabulation area (ZCTA) in order to assess geographic variation using spatial regression models. SaTScan software was also used to analyze potential clustering of arsenic and mercury across Michigan ZCTAs. Within the contiguous United States, elevated mercury blood concentrations, older age, female sex, and coastal status were all associated with elevated arsenic blood concentrations (elevated mercury odds ratio (OR) 3.18 (3.04–3.33); female sex OR 1.06 (1.02–1.11); +10 yr age OR 1.12 (1.11–1.14); coastal state OR 1.33 (1.27–1.40). Within the state of Michigan, as with the continuous U.S., elevated mercury blood concentrations and older age were associated with elevated arsenic blood concentrations (elevated mercury OR 2.75 (2.38–3.18); female sex OR 1.06 (0.95–1.19); +10 yr age OR 1.10 (1.06–1.13). Using spatial regression, it was determined that within Michigan, economic inequality (measured via the Gini coefficient) was also associated with elevated concentrations of mercury in the blood. Clinical reference laboratory data, in conjunction with spatial analysis methods, may enhance our understanding of how elemental exposure affects human health and should be considered for studying how environmental contaminants, socioeconomics and geography affect the health of populations.
Mostrar más [+] Menos [-]Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain
2019
Howard, Jeffrey | Weyhrauch, Jonathan | Loriaux, Glenn | Schultz, Brandy | Baskaran, Mark
A study was undertaken to test the hypothesis that the presence of fly ash and other artifactual materials (AMs) significantly increases the toxicity of urban soil and street dust. AMs were distinguished as artifacts (artificial particles > 2 mm in size), and particulate artifacts (≤2 mm in size); street dust was the <63 μm fraction of street sediments. Reference artifacts, street dusts, and topsoils representing different land use types in Detroit, Michigan were analyzed for miscellaneous radionuclides, trace elements, magnetic susceptibility (MS), and acetic acid-extractable (leachable) Pb. Background levels were established using native glacial sediments. Street sediments were found to have a roadside provenance, hence street dusts inherited their contamination primarily from local soils. All soils and dusts had radionuclide concentrations similar to background levels, and radiological hazard indices within the safe range. Artifacts, fly ash-impacted soils and street dusts contained elevated concentrations of toxic trace elements, which varied with land use type, but none produced a significant amount of leachable Pb. It is inferred that toxic elements in AMs are not bioavailable because they are occluded within highly insoluble materials. Hence, these results do not support our hypothesis. Rather, AMs contribute to artificially-elevated total concentrations leading to an overestimation of toxicity. MS increased with increasing total concentration, hence proximal sensing can be used to map contamination level, but the weak correlation between total and leachable Pb suggests that such maps do not necessarily indicate the associated biohazard. Home site soils with total Pb concentrations >500 mg kg−1 were sporadically toxic. Thus, these results argue against street dust as the local cause of seasonally elevated blood-Pb levels in children. Lead-bearing home site soil tracked directly indoors to form house dust is an alternative exposure pathway.
Mostrar más [+] Menos [-]Accumulation of flame retardants in paired eggs and plasma of bald eagles
2018
Guo, Jiehong | Simon, Kendall | Romanak, Kevin | Bowerman, William | Venier, Marta
In this study, we measured the concentrations of 58 flame retardants (and related compounds) in bald eagle (Haliaeetus leucocephalus) egg and plasma samples from the Michigan. These analytes include polybrominated diphenyl ethers (PBDEs), novel flame retardants (nFRs), Dechlorane-related compounds (Decs), and organophosphate esters (OPEs). A total of 24 paired eaglet plasma and egg samples were collected from inland (IN, N = 13) and the Great Lakes (GL, N = 11) breeding areas from 2000 to 2012. PBDEs were the most abundant chemical group with a geometric mean of 181 ng/g wet weight (ww) in egg and 5.31 ng/g ww in plasma. Decs were barely found in plasma samples, but they were frequently found in eggs (geometric mean 23.5 ng/g ww). OPE levels were comparable to those of PBDEs in the plasma but lower than those of PBDEs in eggs. Dec and PBDE concentrations were significantly higher in GL than in IN (p < 0.05). The ratio of egg to plasma concentrations (lipid normalized) varied with chemicals and correlated with the chemical's octanol-water partition coefficient. The lipid normalized bald eagle egg and plasma concentrations from Lake Superior and Huron were one to three orders of magnitude higher than concentrations measured in composite lake trout (Salvelinus namaycush) from the same lake, implying that they biomagnify in the environment.
Mostrar más [+] Menos [-]Artifact weathering, anthropogenic microparticles and lead contamination in urban soils at former demolition sites, Detroit, Michigan
2013
Howard, Jeffrey L. | Dubay, Brian R. | Daniels, W Lee
A chronological sequence of urban soils 3–92 years old was studied to determine the effects of time on morphogenesis, artifact weathering, and the geochemical partitioning of Pb. Key chronofunctions determined are an increase in ˆA horizon Development Index (defined herein based on soil color) and water-soluble Pb, and a decrease in pH and C/N, with increasing soil age. Key artifact weathering reactions are: 1) portlandite in mortar altered to calcite, 2) ferrite in wrought-iron altered to ferrihydrite and goethite, and 3) carbonaceous materials altered to water-soluble organic substances. Mortar and wrought-iron were found to be Pb-bearing, but weather to produce immobilizing agents. Hence, they are both a source and a sink for Pb. The origin and mobilization of water-soluble Pb is complex and probably includes microbial extracellular polymeric substances, biodegraded soil organic matter, and solubilized organic substances derived from carbonaceous anthropogenic microparticles (soot, char and coal-related wastes).
Mostrar más [+] Menos [-]Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes – Superior, Huron, and Michigan
2018
Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g−1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from <LOQ to 46.6 ng g−1 dm among the three lakes with concentrations typically increasing with time. Distributions of PFASs within dated cores largely corresponded with increase in use of PFASs, but with physiochemical characteristics also affecting distribution. Perfluoroalkyl sulfonates (PFSAs) with chain lengths >7 that include perfluoro-n-octane sulfonate (PFOS) bind more strongly to sediment, which resulted in more accurate analyses of temporal trends. Shorter-chain PFASs, such as perfluoro-n-butanoic acid which is the primary replacement for C8 PFASs that have been phased out, are more soluble and were identified in some core layers at depths corresponding to pre-production periods. Thus, analyses of temporal trends of these more soluble compounds in cores of sediments were less accurate. Total elemental fluorine (TF) and extractable organic fluorine (EOF) indicated that identified PFASs were not a significant fraction of fluorine containing compounds in sediment (<0.01% in EOF).
Mostrar más [+] Menos [-]Variability of indoor and outdoor VOC measurements: An analysis using variance components
2012
Jia, Chunrong | Batterman, Stuart A. | Relyea, George E.
This study examines concentrations of volatile organic compounds (VOCs) measured inside and outside of 162 residences in southeast Michigan, U.S.A. Nested analyses apportioned four sources of variation: city, residence, season, and measurement uncertainty. Indoor measurements were dominated by seasonal and residence effects, accounting for 50 and 31%, respectively, of the total variance. Contributions from measurement uncertainty (<20%) and city effects (<10%) were small. For outdoor measurements, season, city and measurement variation accounted for 43, 29 and 27% of variance, respectively, while residence location had negligible impact (<2%). These results show that, to obtain representative estimates of indoor concentrations, measurements in multiple seasons are required. In contrast, outdoor VOC concentrations can use multi-seasonal measurements at centralized locations. Error models showed that uncertainties at low concentrations might obscure effects of other factors. Variance component analyses can be used to interpret existing measurements, design effective exposure studies, and determine whether the instrumentation and protocols are satisfactory.
Mostrar más [+] Menos [-]Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan
2011
Howard, Jeffrey L. | Olszewska, Dorota
An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100m of a roadway. An A-horizon 16cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects.
Mostrar más [+] Menos [-]Forensic identification and quantification of oil sands-based bitumen released into a complex sediment environment
2020
Douglas, Gregory S. | Graan, Thomas P. | Hardenstine, Jeffery H.
On or about July 25, 2010, approximately 843,000 gal of condensate diluted bitumen (dilbit, a heavy oil) was released into the Kalamazoo River near Marshall, Michigan. As the discharged Line 6B oil migrated downstream the lighter diluent volatilized, formed visible oil droplets/flakes in the water column, became denser than water and/or became aggregated with sediment and migrated to the underlying bottom sediments. Accurate identification and determination of the amount of Line 6B oil present in the sediment was a primary requirement for remediation and allocation of liability. Based on a multi-tiered application of advanced hydrocarbon fingerprinting methodology, key chemical characteristics of the spilled oil were identified that allow for distinguishing heavy oil-related contamination from the complex river sediment background hydrocarbon contamination. It was determined that among the characteristics evaluated, concentration ratios of selected tri-aromatic steranes and triterpanes were most efficient parameters for identification and quantification of the spilled oil in the environment. This quantification approach was successfully applied and validated with field sample results and is consistent with the well-established environmental stability of these petroleum biomarkers and modern hydrocarbon fingerprinting methodology.
Mostrar más [+] Menos [-]