Refinar búsqueda
Resultados 1-10 de 41
Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium Guajava extract
2020
Riaz, Ufana | Zia, Jannatun
The present work reports microwave-assisted synthesis of SnO₂ nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO₂ were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies. The UV–vis DRS spectra of PANI/SnO₂ revealed significant reduction in the optical band gap upon nanohybrid formation. Microwave-assisted catalytic efficiency of pure SnO₂, PANI, PANI/SnO₂ nanohybrids was investigated using DDT as a model persistent organic pollutant. The degradation efficiency of PANI/SnO₂ was found to increase with the increase in the loading of PANI. Around 87% of DDT degradation was achieved within a very short period of 12 min under microwave irradiation using PANI/SnO₂-50/50 as catalyst. The effect of DDT concentration was explored and the degradation efficiency of PANI/SnO₂-50/50 catalyst was noticed to be as high as 82% in presence of 100 mg/L of DDT. The effect of microwave power on the degradation efficiency revealed 79% degradation using the same nanohybrid when exposed to microwave irradiation for 5 min under 1110 W microwave power. Scavenging studies confirmed the generation of OH, O₂⁻ radicals. The fragments with m/z values as low as 86 and 70 were confirmed by LCMS analysis. Recyclability tests showed that PANI/SnO₂-50/50 nanohybrid exhibited 81% degradation of DDT (500 mg/L) even after the third cycle, which reflected high catalytic efficiency as well as remarkable stability of the catalyst. This green nanohybrid could therefore be effectively utilized for the rapid degradation of persistent organic pollutants.
Mostrar más [+] Menos [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
Mostrar más [+] Menos [-]Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation
2017
Chu, Gang | Zhao, Jing | Chen, Fangyuan | Dong, Xudong | Zhou, Dandan | Liang, Ni | Wu, Min | Pan, Bo | Steinberg, Christian E.W.
Microwave irradiation (MW) is an effective technique in heating and pyrolysis. This study compared the properties of peanut shell-biochars produced using MW and muffle furnace (FN). At the same pyrolysis temperature, MW biochars preserved more biomass (as indicated by their higher yields and higher abundance of functional groups) and possessed larger surface areas due to the high abundance of micropores. MW biochars generally exhibited higher adsorption of carbamazepine (CBZ) and bisphenol A (BPA) than FN biochars. However, their surface area-normalized sorption was lower, suggesting that the inner pores may not be fully available to CBZ and BPA sorption. We observed significant free radical signals in both types of biochars. Although CBZ and BPA did not degrade in the biochar sorption systems, the potential role of stronger free radical signals in MW biochars for organic contaminant control may not be overlooked in studies with other chemicals.
Mostrar más [+] Menos [-]Rapid thermal-acid hydrolysis of spiramycin by silicotungstic acid under microwave irradiation
2019
Chen, Zheng | Dou, Xiaomin | Zhang, Yu | Yang, Min | Wei, Dongbin
Spiramycin is a widely used macrolide antibiotic and exists at high concentration in production wastewater. A thermal-acid hydrolytic pretreatment using silicotungstic acid (STA) under microwave (MW) irradiation was suggested to mitigate spiramycin from production wastewater. Positive correlations were observed between STA dosage, MW power, interaction time and the hydrolytic removal efficiencies, and an integrative equation was generalized quantitively. Rapid and complete removal 100 mg/L of spiramycin was achieved after 8 min of reaction with 1.0 g/L of STA under 200 W of MW irradiation, comparing to 30.1% by MW irradiation or 15.9% by STA alone. The synergetic effects of STA and MW irradiation were originated from the dissociated-proton catalysis by STA and the dipolar rotation heating effect of MW. STA performed much better than the mineral acid H2SO4 under MW, due to the much stronger Brönsted acidity and higher Hammett acidity. After 8 min, 98.0% of antibacterial potency was also reduced. The m/z 558.8614 fragment (P1) and m/z 448.1323 fragment (P2) were identified as the primary products, which were formed by breaking glucosidic bonds and losing mycarose and forosamine for P1 and further mycaminose moiety for P2. Finally, production wastewater with 433 mg/L of spiramycin was effectively treated using this thermal-acid hydrolytic method. Spiramycin and its antibacterial potency both dropped to 0 after 6 min. The potency drop was supposed from the losing of mycarose and/or forosamine. To decrease both the concentration of spiramycin and its antibacterial potency, combinedly using STA and MW was suggested in this work to break down the structural bonds of the functional groups rather than to destroy the whole antibiotic molecules. It is promising for pretreating spiramycin-contained production wastewater to mitigate both the antibiotic and its antibacterial potency.
Mostrar más [+] Menos [-]Carbon dioxide elimination and regeneration of resources in a microwave plasma torch
2016
Uhm, Han S. | Kwak, Hyoung S. | Hong, Yong C.
Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials.
Mostrar más [+] Menos [-]The preparation of slow-release fertilizers with biomass ash and water/waste acid solutions from desulfurization and denitrification of flue gas
2022
Qi, Yongfeng | Wang, Ziqian | Ge, Panle | Wang, Meiting | Zhang, Chuanling | Wang, Huawei | Zhao, Lingzhi | Wu, Jiang | Li, Yan
In this study, a method of preparing fertilizers with the fly ash from biomass power plants and the waste acid solution from flue gas desulfurization and denitrification was disclosed. In addition, the study also explored the effects of added fine particles, unburned biochar, and other commercial fertilizers on soil water retention and slow-release effect of fertilizers. The analysis was done by comparing the aggregation degrees of crystalline salt and the variations of the chemical bonds. The experimental results showed that the added fine particles could effectively increase the water absorption of fertilizers, which helped to improve soil water retention. Meanwhile, the fine particles could strengthen the special adsorption of basic compounds containing N, P, and other nutrients by biochar and enhance the slow-release effect of fertilizers. Although adding part commercial fertilizers weakened the water absorption of fertilizers slightly, it had only a relatively small effect on the aggregation of water-soluble crystalline salt on the surfaces of fine particles and biochar. Furthermore, the microwave was applied to promote the absorption of N by unburned biochar, during which only small amounts of volatile were released and lost. The experiments had confirmed that microwave irradiation could promote the agglomeration of biochar on crystalline salt effectively, thus enhancing the slow-release effect of crystalline salt in fertilizers. Finally, pot experiments demonstrated that the self-prepared fertilizer improved plant growth by its better water absorption and slow-release properties during the whole growth period, which had promising application potential as the slow-release fertilizer in the plant growth field.
Mostrar más [+] Menos [-]Microwave-Assisted Modification of Corncob with Trimethylammonium Chloride for Efficient Removal of Cr(VI): Preparation, Characterization, and Mechanism
2020
He, Yinhai | Han, Shaoke | Lin, Hai | Dong, Yingbo
A novel aminated adsorption material, 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA)-modified corncob (CTAMC), was successfully synthesized by microwave irradiation assisting method for Cr(VI) removal from aqueous solutions. The preparation conditions and physicochemical properties of CTAMC and the Cr(VI) removal mechanism were investigated. Results showed that the optimal preparation conditions were 1.0 g of corncob treated with 55 g/L sodium hydroxide for 80 min, 30% CTA, and 480 W of microwave power treatment for 5.0 min. These conditions resulted in the yield of CTAMC of approximately 60%, and the sodium hydroxide concentration exhibited great influence on the yield. The Cr(VI) adsorption capacity of CTAMC reached 38 mg/g, which was 9 times higher than that of the raw corncob. Results from the field-emission scanning electron microscopy and energy dispersive spectroscopy characterization showed that the surface structure of CTAMC was rougher than that of raw corncob; the fiber structure was more apparent, and the content of N and Cl elements were significantly increased, which indicated that CTA was successfully grafted on the surface of corncob. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis demonstrated that the quaternary amino group (–NH–), hydroxyl (C–OH), and chloride ion (Cl⁻) were primarily involved in the Cr(VI) removal process, revealing that Cr(VI) was removed by both adsorption and reduction. This study provides an alternative for the removal of Cr(VI) and further broadens the utilization of agricultural waste.
Mostrar más [+] Menos [-]Optimization of process variables on two-step microwave-assisted transesterification of waste cooking oil
2020
Supraja, Kolli Venkata | Behera, Bunushree | Paramasivan, Balasubramanian
Scale-up and commercialization of biodiesel is often delimited by costly feedstock that adds up to the process costs. These underlying issues demand the exploration of unconventional cheap feed to improve the process economics. Conversion of waste cooking oil (WCO) into biodiesel could reduce the process costs by 60–70%. However, the continuous exposure to heat during frying leads to oxidation as well increase in the free fatty acid (FFA) content which intensifies the time and energy required for transesterification. The present study analyzes the effect of parameters over the conversion of WCO (with 8.17% FFA) into biodiesel via two-step acid-alkali-based microwave-assisted transesterification. Response surface methodology (RSM) was used to optimize the oil:methanol volume ratio, microwave power, and reaction time during the acid-catalyzed esterification to bring down the FFA below 1%. Microwave irradiation of 250 W, with methanol:oil molar ratio of 19.57:1 [oil:methanol volume ratio of 1.31 (expressed as decimal)] and reaction time of 35 s, resulted in 0.082% of FFA. Alkali-catalyzed transesterification with methanol:oil molar ratio of 5:1 with 2% sodium hydroxide at 65 °C thereby produced fatty acid methyl esters (FAMEs) with the volumetric biodiesel yield of 94.6% in 30 min. Physiochemical properties of the transesterified WCO were well comparable with the biodiesel standards. The study highlights the essentiality of multivariate optimization for the esterification process that could aid in understanding the interactive effects of variables over FFA content. Such studies would benefit in scaling up of the transesterification process at industrial level by improving the economics of the overall bioprocess.
Mostrar más [+] Menos [-]Optimization of Ammonia Removal from Aqueous Solution by Microwave-Assisted Air Stripping
2017
Ata, Osman Nuri | Kanca, Arzu | Demir, Zeynep | Yigit, Vecihi
In this study, the optimum conditions for the ammonia removal from aqueous solution by microwave-assisted air stripping have been investigated at pH 11. Ammonia solution with five different initial ammonia concentrations was prepared synthetically. The Taguchi method was applied to optimize the ammonia removal conditions. Initial ammonia concentration, air flow rate, temperature, stirring speed, microwave radiation power, and radiation time were defined as the optimization parameters. Experiments were carried out at five different levels for each operational parameter. The results of the experiments revealed that 1800 ppm of initial ammonia concentration, 7.5 L min⁻¹ of air flow rate, 60 °C of temperature, 500 rpm of stirring speed, and 500 W of microwave radiation power for 180 min. of microwave radiation time are optimum conditions for complete ammonia removal. In addition to present experimental data, the optimum operational conditions predicted by the balanced characteristics of orthogonal array were confirmed experimentally. Finally, the effect of optimization parameters was discussed in detail. Graphical Abstract ᅟ
Mostrar más [+] Menos [-]The boosting of microwave roasting technology on the desulfurization of phosphate rock
2022
He, Di | Yao, Mei | Wang, Hongbin | Xie, Binghua | Yu, Qian | Geng, Na | Jia, Lijuan
A green and-easy to operate method, the microwave technology, was developed to promote the desulfurization process of phosphate rock, systematically investigates the strengthening effect of microwave, and uses XRD, BET, SEM, XRF, ICP, and EDS to characterize the reactants. The results show that the main reason for the desulfurization efficiency is improved by microwave heating under microwave conditions, different thermal stress phosphate rock materials lead to the destruction of each microstructure, and a specific surface area increased 40.25% phosphate rock. In addition, after microwave irradiation, the pore size of the phosphate rock at 2–5 nm is significantly increased, and the number of mesopores is significantly increased, thereby increasing the desulfurization efficiency of the phosphate rock. By investigating the effects of temperature, oxygen content, flow rate, and solid-liquid ratio on desulfurization efficiency, the paper concludes that the optimal conditions for desulfurization of phosphate rock after microwave irradiation are C(SO₂) is 2500 mg·m⁻³, temperature is 40 °C, φ(O₂) is 5%, solid-liquid ratio is 3.5 g:200 ml, and flue gas flow is 500 ml·min⁻¹.
Mostrar más [+] Menos [-]