Refinar búsqueda
Resultados 1-10 de 284
Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights
2022
Zhang, Lin | Ji, Xiaoli | Ding, Fan | Wu, Xuan | Tang, Ning | Wu, Qing
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT–PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca²⁺]ᵢ) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca²⁺]ᵢ overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca²⁺]ᵢ fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Mostrar más [+] Menos [-]Urban fine particulate matter causes cardiac hypertrophy through calcium-mediated mitochondrial bioenergetics dysfunction in mice hearts and human cardiomyocytes
2022
Zou, Lingyue | Li, Binjing | Xiong, Lilin | Wang, Yan | Xie, Wenjing | Huang, Xiaoquan | Liang, Ying | Wei, Tingting | Liu, Na | Chang, Xiaoru | Bai, Changcun | Wu, Tianshu | Xue, Yuying | Zhang, Ting | Tang, Meng
In recent years, the cardiovascular toxicity of urban fine particulate matter (PM₂.₅) has sparked significant alarm. Mitochondria produce 90% of ATP and make up 30% of the volume of cardiomyocytes. Thus knowledge of myocardial mitochondrial dysfunction due to PM₂.₅ exposure is essential for further cardiotoxic effects. Here, the mechanism of PM₂.₅-induced cardiac hypertrophy through calcium overload and mitochondrial dysfunction was investigated in vivo and in vitro. Male and female BALB/c mice were given 1.28, 5.5, and 11 mg PM₂.₅/kg bodyweight weekly through oropharyngeal inhalation for four weeks and were assigned to low, medium, and high dose groups, respectively. PM₂.₅-induced myocardial edema and cardiac hypertrophy were detected in the high-dose group. Mitochondria were scattered and ruptured with abnormal ultrastructural morphology. In vitro experiments on human cardiomyocyte AC16 showed that exposure to PM₂.₅ for 24 h caused opened mitochondrial permeability transition pore --leading to excessive calcium production, decreased mitochondrial membrane potential, weakened mitochondrial respiratory metabolism capacity, and decreased ATP production. Nevertheless, the administration of calcium chelator ameliorated the mitochondrial damage in the PM₂.₅-treated group. Our in vivo and in vitro results confirmed that calcium overload under PM₂.₅ exposure triggered mTOR/AKT/GSK-3β activation, leading to mitochondrial bioenergetics dysfunction and cardiac hypertrophy.
Mostrar más [+] Menos [-]Biomass-related PM2.5 induces mitochondrial fragmentation and dysfunction in human airway epithelial cells
2022
Gao, Mi | Liang, Chunxiao | Hong, Wei | Yu, Xiaoyuan | Zhou, Yumin | Sun, Ruiting | Li, Haiqing | Huang, Haichao | Gan, Xuhong | Yuan, Ze | Zhang, Jiahuan | Chen, Juan | Mo, Qiudi | Wang, Luyao | Lin, Biting | Li, Bing | Ran, Pixin
The use of biomass for cooking and heating is considered an important factor associated with chronic obstructive pulmonary disease (COPD), but few studies have previously addressed its underlying mechanisms. Therefore, this research aimed to evaluate the effects of biomass-related PM₂.₅ (BRPM₂.₅) exposure on 16HBE human airway epithelial cells and in mice with regard to mitochondrial dysfunction. Our study indicated that BRPM₂.₅ exposure of 16HBE cells resulted in mitochondrial dysfunction, including decreased mitochondrial membrane potential, increased expression of fission proteins-phospho-DRP1, increased mitochondrial ROS (mtROS), and decreased levels of ATP. BRPM₂.₅ altered the mitochondrial metabolism of 16HBE cells by decreasing mitochondrial oxygen consumption and glycolysis. However, Mitochondria targeted peptide SS-31 eliminated mitochondrial ROS and alleviated the ATP deficiency and proinflammatory cytokines release. BRPM2.5 exposure resulted in abnormal mitochondrial morphological alterations both in 16HBE and in lung tissue. Taken together, these results suggest that BRPM₂.₅ has detrimental effects on human airway epithelial cells, leading to mitochondrial dysfunction, abnormal mitochondrial metabolism and altered mitochondrial dynamics. The present study provides the first evidence that disruption of mitochondrial structure and mitochondrial metabolism may be one of the mechanisms of BRPM₂.₅-induced respiratory dysfunction.
Mostrar más [+] Menos [-]Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice
2021
Guo, Yi | Cao, Zhijuan | Jiao, Xianting | Bai, Dandan | Zhang, Yalin | Hua, Jing | Liu, Wenqiang | Teng, Xiaoming
Exposure of females to fine particulate matter ≤2.5 μm in diameter (PM2.5) prior to pregnancy could produce adverse impact on fertility and enhances susceptibility of the offspring to a variety of diseases. In the current study, female C57BL/6 mice (6 weeks of age) were exposed to either concentrated PM2.5 or filtered air (average PM2.5 concentration: 115.60 ± 7.77 vs. 14.07 ± 0.38 μg/m⁻³) using a whole-body exposure device for 12 weeks. Briefly, PM2.5 exposure decreased anti-Müllerian hormone level (613.40 ± 17.36 vs 759.30 ± 21.90 pg mL⁻¹, P<0.01) and increased reactive oxygen species (ROS) level (45.39 ± 0.82 vs 24.20 ± 0.85 arbitrary unit in fluorescence assay, P<0.01) in oocytes. The exposure increased oocyte degeneration rate (21.5% vs 5.1%, respectively (P<0.01) and decreased the 2-cell formation rate (71.9% vs 86.0%, P < 0.01). Transcriptome profiling using RNA sequencing showed wide spectrum of abnormal expression of genes, particularly those involved in regulating the mitochondrial respiratory complex in oocytes and metabolic processes in blastocysts. The exposure decreased litter size (6 ± 0.37 vs 7 ± 0.26, P<0.05) and weight (1.18 ± 0.02 vs 1.27 ± 0.02 g, P<0.01). In summary, PM2.5 exposure decreased female fertility, possibly through increased ROS production in oocytes and metabolic disturbances in developing embryos. The cause-effect relationship, however, requires further investigation.
Mostrar más [+] Menos [-]Mechanism of thorium-nitrate and thorium-dioxide induced cytotoxicity in normal human lung epithelial cells (WI26): Role of oxidative stress, HSPs and DNA damage
2021
Das, Sourav Kumar | Ali, Manjoor | Shetake, Neena G. | Dumpala, Rama Mohan R. | Pandey, Badri N. | Kumar, Amit
Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1–100 μg/ml, 24–72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.
Mostrar más [+] Menos [-]Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines
2021
Kim, Chaeeun | Choe, Hyeseung | Park, Jungeun | Kim, Gayoung | Kim, Kyeongnam | Jeon, Hwang-Ju | Moon, Joon-Kwan | Kim, Myoung-Jin | Lee, Sung-Eun
Azoxystrobin (AZ) and pyraclostrobin (PY) are strobilurin fungicides that inhibit fungal mitochondrial respiration. In this study, a representative model, zebrafish (Danio rerio), was used as a test species for acute and developmental toxicity. Survival and malformation rates were observed only PY-treated embryos, with an LC₅₀ value of 77.75 ppb accompanied by a dramatic decrease in hatching rate, while AZ did not show great mortality. Morphological changes were observed in PY-treated embryos with the occurrence of pericadial edema at 25 ppb. A delay in growth was observed after treatment with pyraclostrobin at 50 ppb. Use of genetically engineered Tg(cmlc:EGFP) allowed fluorescence observation during heart development. PY interfered with normal heart development via upregulation of the nppa gene responsible for the expression of natriuretic peptides. Heart function was dramatically reduced as indicated by reduced heart rates. Increased expression of the nppa gene was also seen in AZ-treated embryos. The expression level of cyp24a1 was also up-regulated, while ugt1a1 and sult1st6 were down-regulated after treatment of zebrafish embryos with AZ or PY. Overall, strobilurin fungicides might inhibit normal heart formation and function within the range of concentrations tested.
Mostrar más [+] Menos [-]Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice
2021
Li, Milu | Zhou, Su | Wu, Yaling | Li, Yan | Yan, Wei | Guo, Qingchun | Xi, Yueyue | Chen, Yingying | Li, Yuanyuan | Wu, Meng | Zhang, Jinjin | Wei, Jia | Wang, Shixuan
Embryonic exposure to environmental chemicals may result in specific chronic diseases in adulthood. Parabens, a type of environmental endocrine disruptors widely used in pharmaceuticals and cosmetics, have been shown to cause a decline in women's reproductive function. However, whether exposure to parabens during pregnancy also negatively affect the ovarian function of the female offspring in adulthood remains unclear. This study aims to investigate the effects of prenatal propylparaben (PrP) exposure on the ovarian function of adult mice aged 46 weeks, which is equivalent to the age of 40 years in women. Pregnant ICR mice were intraperitoneally injected with human-relevant doses of PrP (i.e., 0, 7.5, 90, and 450 mg/kg/day) during the fetal sex determination period—from embryonic day E7.5 to E13.5. Our results revealed that ovarian aging was accelerated in PrP-exposed mice at 46 weeks, with altered regularity of the estrous cycle, decreased serum estrogen (E2) and progesterone (P4) levels, reduced size of the primordial follicle pool, and increased number of atretic follicles. It was found that prenatal exposure to human-relevant doses of PrP exacerbated ovarian oxidative stress, inflammation, and fibrosis, which promoted follicular atresia by activating the mitochondrial apoptosis pathway. To compensate, the depletion of primordial follicles was also accelerated by activating the PI3K/AKT/mTOR signaling pathway in PrP-exposed mice. Moreover, PrP induced hypermethylation of CpG sites in the promoter region of Cyp11a1 (a 17.16–64.28% increase) partly led to the disrupted steroidogenesis, and the altered methylation levels of imprinted genes H19 and Peg3 may also contribute to the phenotypes observed. These remarkable findings highlight the embryonic origin of ovarian aging and suggest that a reduced use of PrP during pregnancy should be advocated.
Mostrar más [+] Menos [-]Quercetin antagonizes imidacloprid-induced mitochondrial apoptosis through PTEN/PI3K/AKT in grass carp hepatocytes
2021
Miao, Zhiruo | Miao, Zhiying | Wang, Shengchen | Shi, Xu | Xu, Shiwen
Imidacloprid (IMI) is widely used in agriculture, and is toxic to non-target aquatic species. Quercetin (Que) is a flavonoid abundant in fruits and vegetables that exhibits anti-oxidant activity. In the present study, we treated grass carp hepatocytes (L8824) with 0.1 μM Que and/or 1 mM IMI for 24 h to explore the effect of Que on IMI-induced mitochondrial apoptosis. We found that IMI exposure enhanced reactive oxygen species (ROS) generation, inhibiting the activities of SOD, CAT and T-AOC, exacerbating the accumulation of MDA, aggravating the expression of mitochondrial apoptosis pathway (Cyt-C, BAX, Caspase9 and Caspase3) related genes and decreased the expression of anti-apoptosis gene B-cell lymphoma-2 (Bcl-2). In addition, Que and IMI co-treatment significantly restored the activity of anti-oxidant enzymes, downregulated ROS level and apoptosis rate, thereby alleviating the depletion of mitochondrial membrane potential (ΔΨm) and the expression of cytochrome c (Cyt-C), Bcl-2-associated X (BAX), and cysteinyl aspartate specific proteinases (Caspase9 and 3), increasing the Bcl-2 level. Furthermore, we elucidated that Que could inhibit the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), thus activating phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway to attenuate IMI-induced apoptosis. Molecular docking provides assertive evidence for the interaction between Que ligand and PTEN receptor. Consequently, these results indicate that Que effectively antagonizes IMI-induced mitochondrial apoptosis in grass carp hepatocytes via regulating the PTEN/PI3K/AKT pathway.
Mostrar más [+] Menos [-]Consumption of field-realistic doses of a widely used mito-toxic fungicide reduces thorax mass but does not negatively impact flight capacities of the honey bee (Apis mellifera)
2021
Glass, Jordan R. | Fisher, Adrian | Fewell, Jennifer H. | DeGrandi-Hoffman, Gloria | Ozturk, Cahit | Harrison, Jon F.
Commercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.3 ppm) and a concentration two orders of magnitude higher (230 ppm). To challenge flight behavior and elicit near-maximal metabolic rate, we measured flight quality and metabolic rates of bees in two lower-than-normal air densities. Chronic consumption of 230 but not 2.3 ppm Pristine® reduced maximal flight performance and metabolic rates, suggesting that the observed decrease in lifespans of workers reared on field-realistic doses of Pristine®-laced pollen is not due to inhibition of flight muscle mitochondria. However, consumption of either the 230 or 2.3 ppm dose reduced thorax mass (but not body mass), providing the first evidence of morphological effects of Pristine®, and supporting the hypothesis that Pristine® reduces forager longevity by negatively impacting digestive or nutritional processes.
Mostrar más [+] Menos [-]Integrated transcriptomics and proteomics revealed the distinct toxicological effects of multi-metal contamination on oysters
2021
Li, Yunlong | Wang, Wen-Xiong
The Pearl River Estuary (PRE) is the largest estuary in southern China and under high metal stress. In the present study, we employed an integrated method of transcriptomics and proteomics to investigate the ecotoxicological effects of trace metals on the Hong Kong oyster Crassostrea hongkongensis. Three oyster populations with distinct spatial distributions of metals were sampled, including the Control (Station QA, the lowest metal levels), the High Cd (Station JZ, the highest Cd), and the High Zn–Cu–Cr–Ni (Station LFS, with the highest levels of zinc, copper, chromium, and nickel). Dominant metals in oysters were differentiated by principal component analysis (PCA), and theirgene and protein profiles were studied using RNA-seq and iTRAQ techniques. Of the 2250 proteins identified at both protein and RNA levels, 70 proteins exhibited differential expressions in response to metal stress in oysters from the two contaminated stations. There were 8 proteins altered at both stations, with the potential effects on mitochondria and endoplasmic reticulum by Ag. The genotoxicity, including impaired DNA replication and transcription, was specifically observed in the High Cd oysters with the dominating influence of Cd. The structural components (cytoskeleton and chromosome-associated proteins) were impaired by the over-accumulated Cu, Zn, Cr, and Ni at Station LFS. However, enhanced tRNA biogenesis and exosome activity might help the oysters to alleviate the toxicities resulting from their exposure to these metals. Our study provided comprehensive information on the molecular changes in oysters at both protein and RNA levels in responding to multi-levels of trace metal stress.
Mostrar más [+] Menos [-]