Refinar búsqueda
Resultados 1-10 de 11
Adverse effects of fly ashes used as immobilizing agents for highly metal-contaminated soils on Xenopus laevis oocytes survival and maturation—a study performed in the north of France with field soil extracts
2019
Marchand, Guillaume | Demuynck, Sylvain | Slaby, Sylvain | Lescuyer, Arlette | Lemiere, Sebastien | Marin, Matthieu | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF) ; Université de Lille-Centre National de la Recherche Scientifique (CNRS) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
International audience | Amphibians are now recognized as the most endangered group. One of this decline causes is the degradation of their habitat through direct contamination of water, soil leaching, or runoff from surrounding contaminated soils and environments. In the North of France, the extensive industrial activities resulted in massive soil contamination by metal compounds. Mineral amendments were added to soils to decrease trace metal mobility. Because of the large areas to be treated, the use of inexpensive industrial by-products was favored. Two types of fly ashes were both tested in an experimental site with the plantation of trees in 2000. Aim of the present work was to investigate the effects of extracts from metal-contaminated soils treated or not for 10 years with fly ashes on Xenopus laevis oocyte using cell biology approaches. Indeed, our previous studies have shown that the Xenopus oocyte is a relevant model to study the metal ion toxicity. Survival and maturation of oocyte exposed to the soil extracts were evaluated by phenotypic approaches and electrophysiological recordings. An extract derived from a metal-contaminated soil treated for 10 years with sulfo-calcic ashes induced the largest effects. Membrane integrity appeared affected and ion fluxes in exposed oocytes were changed. Thus, it appeared that extracted elements from certain mineral amendments used to prevent the mobility of metals in the case of highly metal-contaminated soils could have a negative impact on X. laevis oocytes.
Mostrar más [+] Menos [-]Effects of glyphosate and a commercial formulation Roundup® exposures on maturation of Xenopus laevis oocytes
2019
Slaby, Sylvain | Titran, Pauline | Marchand, Guillaume | Hanotel, Julie | Lescuyer, Arlette | Lepretre, Alain | Bodart, Jean-Francois | Marin, Matthieu | Lemiere, Sebastien | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF) ; Université de Lille-Centre National de la Recherche Scientifique (CNRS) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
International audience | Pesticides are often found at high concentrations in small ponds near agricultural field where amphibians are used to live and reproduce. Even if there are many studies on the impacts of phytopharmaceutical active ingredients in amphibian toxicology, only a few are interested in the earlier steps of their life cycle. While their populations are highly threatened with extinction. The aim of this work is to characterize the effects of glyphosate and its commercial formulation Roundup® GT Max on the Xenopus laevis oocyte maturation which is an essential preparation for the laying and the fertilization. Glyphosate is an extensively used herbicide, not only known for its effectiveness but also for its indirect impacts on non-target organisms. Our results showed that exposures to both forms of glyphosate delayed this hormone-dependent process and were responsible for spontaneous maturation. Severe and particular morphogenesis abnormalities of the meiotic spindle were also observed. The MAPK pathway and the MPF did not seem to be affected by exposures. The xenopus oocyte is particularly affected by the exposures and appears as a relevant model for assessing the effects of environmental contamination.
Mostrar más [+] Menos [-]Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice
2021
Guo, Yi | Cao, Zhijuan | Jiao, Xianting | Bai, Dandan | Zhang, Yalin | Hua, Jing | Liu, Wenqiang | Teng, Xiaoming
Exposure of females to fine particulate matter ≤2.5 μm in diameter (PM2.5) prior to pregnancy could produce adverse impact on fertility and enhances susceptibility of the offspring to a variety of diseases. In the current study, female C57BL/6 mice (6 weeks of age) were exposed to either concentrated PM2.5 or filtered air (average PM2.5 concentration: 115.60 ± 7.77 vs. 14.07 ± 0.38 μg/m⁻³) using a whole-body exposure device for 12 weeks. Briefly, PM2.5 exposure decreased anti-Müllerian hormone level (613.40 ± 17.36 vs 759.30 ± 21.90 pg mL⁻¹, P<0.01) and increased reactive oxygen species (ROS) level (45.39 ± 0.82 vs 24.20 ± 0.85 arbitrary unit in fluorescence assay, P<0.01) in oocytes. The exposure increased oocyte degeneration rate (21.5% vs 5.1%, respectively (P<0.01) and decreased the 2-cell formation rate (71.9% vs 86.0%, P < 0.01). Transcriptome profiling using RNA sequencing showed wide spectrum of abnormal expression of genes, particularly those involved in regulating the mitochondrial respiratory complex in oocytes and metabolic processes in blastocysts. The exposure decreased litter size (6 ± 0.37 vs 7 ± 0.26, P<0.05) and weight (1.18 ± 0.02 vs 1.27 ± 0.02 g, P<0.01). In summary, PM2.5 exposure decreased female fertility, possibly through increased ROS production in oocytes and metabolic disturbances in developing embryos. The cause-effect relationship, however, requires further investigation.
Mostrar más [+] Menos [-]Xenopus in revealing developmental toxicity and modeling human diseases
2021
Gao, Juanmei | Shen, Wanhua
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Mostrar más [+] Menos [-]Parental plasma concentrations of perfluoroalkyl substances and In Vitro fertilization outcomes
2021
Ma, Xueqian | Cui, Long | Chen, Lin | Zhang, Jun | Zhang, Xiaohui | Kang, Quanmin | Jin, Fan | Ye, Yinghui
Perfluoroalkyl substances (PFAS) are known to be endocrine-disrupting compounds, but are nevertheless widely used in consumer and industrial products and have been detected globally in human and wildlife. Data from animal and epidemiological studies suggest that PFAS may affect human fertility. This led us to consider whether maternal or paternal plasma PFAS had effects on in vitro fertilization (IVF) outcomes. The study population consisted of 96 couples who underwent IVF treatment in 2017 due to tubal factor infertility. The concentrations of 10 PFAS in blood samples from both male and female partners were measured. Poisson regression with log link was performed to evaluate the association between the tertiles of PFAS concentrations and numbers of retrieved oocytes, mature oocytes, two-pronuclei (2 PN) zygotes, and good-quality embryos, while multiple linear regression models were used to investigate the correlation between plasma PFAS and semen parameters. Multivariable logistic regression was used to evaluate the association between the tertiles of PFAS concentrations and clinical outcomes. It was found that maternal plasma concentrations of perfluorooctanoic acid (PFOA) were negatively associated with the numbers of retrieved oocytes (pₜᵣₑₙd = 0.023), mature oocytes (pₜᵣₑₙd = 0.015), 2 PN zygotes (pₜᵣₑₙd = 0.014), and good-quality embryos (pₜᵣₑₙd = 0.012). Higher paternal plasma PFOA concentrations were found to be significantly associated with reduced numbers of 2 PN zygotes (pₜᵣₑₙd = 0.047). None of the maternal or paternal PFAS were significantly associated with the probability of implantation, clinical pregnancy, or live birth. To our knowledge, the present study is the first to assess the association between parental exposure to PFAS and IVF outcomes. Our results suggest the potential reproductive effects of PFAS on both men and women, and that exposure to PFAS may negatively affect IVF outcomes. Future studies, particularly with large sample size cohorts, are needed to confirm these findings.
Mostrar más [+] Menos [-]Di (2-ethylhexyl) phthalate impairs primordial follicle assembly by increasing PDE3A expression in oocytes
2021
Liu, Jing-Cai | Yan, Zi-Hui | Li, Bo | Yan, Hong-Chen | De Felici, M. (Massimo) | Shen, Wei
It is known that Di (2-ethylhexyl) phthalate (DEHP) may impact mammalian reproduction and that in females one target of the drug’s action is follicle assembly. Here we revisited the phthalate’s action on the ovary and from bioinformatics analyses of the transcriptome performed on newborn mouse ovaries exposed in vitro to DEHP, up-regulation of PDE3A, as one of the most important alterations caused by DEHP on early folliculogenesis, was identified. We obtained some evidence suggesting that the decrease of cAMP level in oocytes and the parallel decrease of PKA expression, consequent on the PDE3A increase, were a major cause of the reduction of follicle assembly in the DEHP-exposed ovaries. In fact, Pde3a RNAi on cultured ovaries reducing cAMP and PKA decrease counteracted the primordial follicle assembly impairment caused by the compound. Moreover, RNAi normalized the level of Kit, Nobox, Figla mRNA and GDF9, BMP15, CX37, γH2AX proteins in oocytes, and KitL transcripts in granulosa cells as well as their proliferation rate altered by DEHP exposure. Taken together, these results identify PDE3A as a new critical target of the deleterious effects of DEHP on early oogenesis in mammals and highlight cAMP-dependent pathways as major regulators of oocyte and granulosa cell activities crucial for follicle assembly. Moreover, we suggest that the level of intracellular cAMP in the oocytes may be an important determinant for their capability to repair DNA lesions caused by DNA damaging compounds including DEHP.
Mostrar más [+] Menos [-]Constant light exposure causes oocyte meiotic defects and quality deterioration in mice
2020
Zhang, Huiting | Yan, Ke | Sui, Lumin | Nie, Junyu | Cui, Kexin | Liu, Jiahao | Zhang, Hengye | Yang, Xiaogan | Lu, Kehuan | Liang, Xingwei
Artificial light at night (ALAN) exposes us to prolonged illumination, that adversely affects female reproduction. However, it remains to be clarified how prolonged light exposure affects oocyte meiotic maturation and quality. To this end, we exposed female mice to a constant light (CL) of 250 lux for different durations. Our findings showed that CL exposure for 7 weeks reduced the oocyte maturation rate. Meanwhile, CL exposure caused greater abnormalities in spindle assembly and chromosome alignment and a higher rate of oocyte aneuploidy than the regular light dark cycle. CL exposure also induced oxidative stress and caused mitochondrial dysfunction, which resulted in oocyte apoptosis and autophagy. Notably, our results showed that CL exposure reduced the levels of α-tubulin acetylation, DNA methylation at 5 mC, RNA methylation at m⁶A and histone methylation at H3K4me2 but increased the levels of histone methylation at H3K27me2 in oocytes. In summary, our findings demonstrate that constant bright light exposure causes oocyte meiotic defects and reduces cytoplasmic quality. These results extend the current understanding of ALAN-mediated defects in female reproduction.
Mostrar más [+] Menos [-]Nonylphenol exposure affects mouse oocyte quality by inducing spindle defects and mitochondria dysfunction
2020
Xu, Yi | Sun, Ming-Hong | Xu, Yao | Ju, Jia-Qian | Pan, Meng-Hao | Pan, Zhen-Nan | Li, Xiao-Han | Sun, Shao-Chen
Nonylphenol (NP) is a chemical raw material and intermediate which is mainly used in the production of surfactants, lubricating oil additives and pesticide emulsifiers. NP is reported to be toxic on the immune system, nervous system and reproductive system due to its binding to estrogen receptors. However, the toxicity of NP on mammalian oocyte quality remains unclear. In present study, we explored the effects of NP exposure on mouse oocyte maturation. Our results showed that 4 weeks of NP exposure increased the number of atresia follicles and decreased oocyte developmental competence. Transcriptomic analysis indicated that NP exposure altered the expression of more than 800 genes in oocytes, including multiple biological pathways. Subcellular structure examination indicated that NP exposure disrupted meiotic spindle organization and caused chromosome misalignment. Moreover, aberrant mitochondrial distribution and decreased membrane potential were also observed, indicating that NP exposure caused mitochondria dysfunction. Further analysis showed that NP exposure resulted in the accumulation of reactive oxygen species (ROS), which causes oxidative stress; and the NP-exposed oocytes showed positive Annexin-V signal, indicating the occurrence of early apoptosis. In summary, our results indicated that NP exposure reduced oocyte quality by affecting cytoskeletal dynamics and mitochondrial function, which further induced oxidative stress and apoptosis in mice.
Mostrar más [+] Menos [-]Melatonin ameliorates ochratoxin A-induced oxidative stress and apoptosis in porcine oocytes
2020
Lan, Mei | Zhang, Yu | Wan, Xiang | Pan, Meng-Hao | Xu, Yao | Sun, Shao-Chen
Melatonin is a hormone which is generated from pineal gland, and it is responsible for the regulation of wake-sleep cycle. Melatonin is a well-known antioxidant and free radical scavenger to protect against multiple type of tissue damage. While ochratoxin A (OTA) is a mycotoxin found widely in contaminated food and foodstuffs, which causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive damage in humans and animals. In present study we report the toxicity of OTA on porcine oocyte quality and the protective effects of melatonin on OTA-exposed oocytes. Using transcriptome analysis our results show that OTA exposure alters the expression of multiple genes in oocytes, indicating its effect on oocyte maturation. The cellular changes following OTA treatment are examined, and the results show that OTA adversely affects oocyte polar body extrusion, which is confirmed by the delay of Cdc2-mediated cell cycle progression. OTA exposure also disrupts meiotic spindle formation, which is confirmed by altered phosphorylated MAPK expression. RNA-seq screening and further fluorescence staining results show that OTA induces aberrant mitochondria distribution and oxidative phosphorylation defects, which then causes oxidative stress, followed by early apoptosis and autophagy. Treatment with melatonin significantly ameliorates oxidative stress and apoptosis, which further protects cell cycle and spindle formation in OTA-exposed oocytes. Collectively, these results show the protective effects of melatonin against defects induced by OTA during porcine meiotic oocyte maturation.
Mostrar más [+] Menos [-]Sensitivity of eastern oyster (Crassostrea virginica) spermatozoa and oocytes to dispersed oil: Cellular responses and impacts on fertilization and embryogenesis
2017
Vignier, J. | Volety, A.K. | Rolton, A. | Le Goïc, N. | Chu, F.-L.E. | Robert, R. | Soudant, P.
The 2010 Deepwater Horizon (DWH) oil spill released millions of barrels of oil and dispersant into the Gulf of Mexico. The timing of the spill coincided with the spawning season of Crassostrea virginica. Consequently, gametes released in the water were likely exposed to oil and dispersant. This study aimed to (i) evaluate the cellular effects of acute exposure of spermatozoa and oocytes to surface slick oil, dispersed mechanically (HEWAF) and chemically (CEWAF), using flow-cytometric (FCM) analyses, and (ii) determine whether the observed cellular effects relate to impairments of fertilization and embryogenesis of gametes exposed to the same concentrations of CEWAF and HEWAF. Following a 30-min exposure, the number of spermatozoa and their viability were reduced due to a physical action of oil droplets (HEWAF) and a toxic action of CEWAF respectively. Additionally, reactive oxygen species (ROS) production in exposed oocytes tended to increase with increasing oil concentrations suggesting that exposure to dispersed oil resulted in an oxidative stress. The decrease in fertilization success (1-h), larval survival (24-h) and increase in abnormalities (6-h and 24-h) may be partly related to altered cellular characteristics. FCM assays are a good predictor of sublethal effects especially on fertilization success. These data suggest that oil/dispersant are cytotoxic to gametes, which may affect negatively the reproduction success and early development of oysters.
Mostrar más [+] Menos [-]