Refinar búsqueda
Resultados 1-10 de 241
Studies on the solid waste extracts from a chloro alkali factory: I. Morphological behaviour of rice seedlings grown in the waste extract.
1984
Misra S.R. | Misra B.N.
Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China
2021
Ding, Wencheng | Xu, Xinpeng | Zhang, Jiajia | Huang, Shaohui | He, Ping | Zhou, Wei
Decision-making related to nitrogen (N) fertilization is a crucial step in agronomic practices because of its direct interactions with agronomic productivity and environmental risk. Here, we hypothesized that soil apparent N balance could be used as an indicator to determine the thresholds of N input through analyzing the responses of the yield and N loss to N balance. Based on the observations from 951 field experiments conducted in rice (Oryza sativa L.) cropping systems of China, we established the relationships between N balance and ammonia (NH₃) volatilization, yield increase ratio, and N application rate, respectively. Dramatical increase of NH₃ volatilizations and stagnant increase of the rice yields were observed when the N surplus exceeded certain levels. Using a piecewise regression method, the seasonal upper limits of N surplus were determined as 44.3 and 90.9 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the responses of NH₃ volatilization, and were determined as 53.0–74.9 and 97.9–112.0 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the maximum-yield consideration. Based on the upper limits of N surplus, the thresholds of N application rate suggested to be applied in single, middle-MLYR, middle-SW, early, and late rice types ranged 179.0–214.9 kg N ha⁻¹ in order to restrict the NH₃ volatilization, and ranged 193.3–249.8 kg N ha⁻¹ in order to achieve the maximum yields. If rice straw was returned to fields, on average, the thresholds of N application rate could be theoretically decreased by 17.5 kg N ha⁻¹. This study provides a robust reference for restricting the N surplus and the synthetic fertilizer N input in rice fields, which will guide yield goals and environmental protection.
Mostrar más [+] Menos [-]Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production
2021
Shin, JoungDu | Park, DoGyun | Hong, SeungGil | Jeong, Changyoon | Kim, Hyunook | Chung, W. (Woojin)
Supplemental activated biochar pellet fertilizers (ABPFs) were evaluated as a method to sequester carbon and reduce greenhouse gas (GHG) emissions, and improve rice production. The evaluated treatments were a control (standard cultivation method, no additives applied), activated rice hull biochar pellets with 40% of N (ARHBP-40%), and activated palm biochar pellets with 40% of N (APBP-40%). The N supplied by the ARHBP-40% and APBP-40% treatments reduced the need for supplemental inorganic nitrogen (N) fertilizer by 60 percent. The ARHBP-40% treatment sequestered as much as 1.23 tonne ha⁻¹ compared to 0.89 tonne ha⁻¹ in the control during the rice-growing season. In terms of greenhouse gas (GHG) emissions, CH₄ emissions were not significantly different (p > 0.05) between the control and the ARHBP-40%, while the lowest N₂O emissions (0.002 kg ha⁻¹) were observed in the ARHBP-40% during the crop season. Additionally, GHG (CO₂-equiv.) emissions from the ARHBP-40% application were reduced by 10 kg ha⁻¹ compared to the control. Plant height in the control was relatively high compared to others, but grain yield was not significantly different among the treatments. The application of the ARHBP-40% can mitigate greenhouse gas emissions and enhance carbon sequestration in crop fields, and ABPFs can increase N use efficiency and contribute to sustainable agriculture.
Mostrar más [+] Menos [-]Cd bioavailability and nitrogen cycling microbes interaction affected by mixed amendments under paddy-pak choi continued planting
2021
Li, Houfu | Abbas, Touqeer | Cai, Mei | Zhang, Qichun | Wang, Jingwen | Li, Yong | Di, Hongjie | Ṭāhir, Muḥammad
Cadmium (Cd) is the most concerning soil pollutant, and a threat to human health, especially in China. The in-situ immobilization of Cadmium by amendments is one of the most widely adopted methods to remedy soil contamination. The study was designed to evaluate the effect of organo-chemical amendments on soil Cd bioavailability and nitrogen cycling microbes under continuous planting of rice (Oryza sativa) and pak choi (Brassica chinensis L.). The experiment was carried out using four amendments, Lime, Zeolite, Superphosphate, and Biochar, at two different ratios; M1: at the ratio of 47:47:5:1, and M2 at the ratio of 71:23:5:1, respectively. Moreover, both M1 and M2 were enriched at four levels (T1: 0.5%; T2: 1%; T3: 2%; T4: 4%). Results showed that compared with CK (Cd enriched soils), the yield of rice under treatments of M1T1 and M2T1 increased by 8.93% and 8.36%, respectively. While the biomass (fresh weight) of pak choi under M1 and M2 amendments increased by 2.52–2.98 times and 0.76–2.89 times respectively, under enrichment treatments T1, T2, and T3. The total Cd concentrations in rice grains treated with M1T3 and M2T3 decreased by 89.25% and 93.16%, respectively, compared with CK. On the other hand, the total Cd concentrations in pak choi under M1T3 and M2T2 decreased by 92.86% and 90.23%, respectively. The results showed that soil pH was the main factor affecting Cd bioavailability in rice and pak choi. The Variance partitioning analysis (VPA) of rice and pak choi showed that soil pH was the most significant contributing factor. In the rice season, the contribution of soil pH (P) on Cd bioavailability was 10.14% (P = 0.102), and in the pak choi season, the contribution of soil pH was 8.38% (P = 0.133). Furthermore, the abundance of ammonia oxidation and denitrifying microorganisms had significantly correlation with soil pH and exchange Cd. In rice season, when the enrichment level of amendments increased from 0.5% (T1) to 2% (T3), the gene abundance of AOA, AOB, nirK, nirS and nosZ (І) tended to decrease. While in pak choi season, when the enrichment level increased at the level of 0.5% (T1), 1% (T2), and 2% (T3), the gene abundance of AOB, nirS, and nosZ (І) increased. Additionally, the gene abundance of AOA and nirK showed a reduction in the pak choi season contrasting to rice. And the mixed amendment M2 performed better at reducing Cd uptake than M1, which may have correlation with the ratio of lime and zeolite in them. Finally, we conclude that between these two amendments, when applied at a moderate level M2 type performed better than M1 in reducing Cd uptake, and also showed positive effects on both gene abundance and increase soil pH.
Mostrar más [+] Menos [-]Influence of sulfur fertilization on CuO nanoparticles migration and transformation in soil pore water from the rice (Oryza sativa L.) rhizosphere
2020
Sun, Lijuan | Xue, Yong | Peng, Cheng | Xu, Chen | Shi, Jiyan
The biogeochemical cycling of sulfur in soil is closely associated with the mobility and bioavailability of heavy metals; however the influence of sulfur on the behavior of metal-based nanoparticles has not yet been studied. The influence of S fertilizer (S⁰ and Na₂SO₄) applied in paddy soils on CuO NPs behavior in soil pore water was explored in the present study. Synchrotron-based techniques were applied to investigate the migration and speciation transformation of CuO NPs in soil pore water colloids. The application of sulfur fertilizer increased the zeta potential of soil colloids from the rice rhizosphere region and reduced the size of the colloids. Sulfur fertilization decreased the concentration of Cu in soil pore water in the rice rhizosphere region. S⁰ fertilizer reduced the Cu concentration in soil colloids (by 55.8%–73.5%), while Na₂SO₄ increased the Cu concentration in soil colloids (by 173.8%–265.1%). Sulfur fertilization changed the spatial distribution of Fe³⁺ and Cu²⁺ in colloids, making these ions more likely to be aggregated on the edges of soil colloids. Speciation transformation of CuO NPs happened during the process of migration. The main Cu speciation in the soil colloids were CuO NPs, Cu-Cysteine, Cu₂S and Cu-Citrate. Sulfur fertilization increased the proportion of Cu₂S (by 40.5%) in soil pore water colloids from the rice rhizosphere region, while the proportion of CuO NPs was reduced (by 18.4%). Sulfur fertilization changed the morphology and elementary composition of colloids in soil pore water, thus influencing the migration of CuO NPs in the soil column through soil colloids.
Mostrar más [+] Menos [-]Effects of ketoprofen on rice seedlings: Insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis
2020
Wang, Huan | Jin, Mingkang | Xu, Linglin | Xi, Hao | Wang, Binhui | Du, Shaoting | Liu, Huijun | Wen, Yuezhong
Pharmacologically active compounds found in reclaimed wastewater irrigation or animal manure fertilizers pose potential risks for agriculture. The mechanism underlying the effects of ketoprofen on rice (Oryza sativa L.) seedlings was investigated. The results showed that low concentrations (0.5 mg L⁻¹) of ketoprofen slightly stimulate growth of rice seedlings, while high concentrations can significantly inhibit growth by reducing biomass and causing damage to roots. Ketoprofen affects photosynthetic pigment content (Chla, Chlb, and carotenoids) and chlorophyll synthesis gene (HEMA, HEMG, CHLD, CHLG, CHLM, and CAO) expression. Fluorescence parameters such as minimum fluorescence (F₀), maximum fluorescence (Fₘ), variable fluorescence (Fᵥ), potential photosynthetic capacity (Fᵥ/F₀), maximum quantum efficiency of PSII photochemistry (Fᵥ/Fₘ), electron transfer rate (ETR), and Y(II), Y(NPQ), Y(NO) values were affected, showing photosynthetic electron transfer was blocked. Active oxygen radical (O₂•−and H₂O₂), malondialdehyde and proline content increased. Superoxide dismutase, catalase and ascorbate peroxidase activities, glutathione content and antioxidant-related gene (FSD1, MSD1, CSD1, CSD2, CAT1, CAT2, CAT3, APX1, APX2) expression were induced. Higher integrated biomarker response values of eight oxidative stress response indexes were obtained at higher ketoprofen concentrations. Ultrastructure observation showed that ketoprofen causes cell structure damage, chloroplast swelling, increase in starch granules, and reduction in organelles. This study provides some suggested toxicological mechanisms and biological response indicators in rice due to stress from pharmacologically active compounds.
Mostrar más [+] Menos [-]Paddy periphyton reduced cadmium accumulation in rice (Oryza sativa) by removing and immobilizing cadmium from the water–soil interface
2020
Lu, Haiying | Dong, Yue | Feng, Yuanyuan | Bai, Yanchao | Tang, Xianjin | Li, Yuncong | Yang, Linzhang | Liu, Junzhuo
Periphyton plays a significant role in heavy metal transfer in wetlands, but its contribution to cadmium (Cd) bioavailability in paddy fields remains largely unexplored. The main aim of this study was to investigate the effect of periphyton on Cd behavior in paddy fields. Periphyton significantly decreased Cd concentrations in paddy waters. Non-invasive micro-test technology analyses indicated that periphyton can absorb Cd from water with a maximum Cd²⁺ influx rate of 394 pmol cm⁻² s⁻¹ and periphyton intrusion significantly increased soil Cd concentrations. However, soil Cd bioavailability declined significantly due to soil pH increase and soil redox potential (Eh) decrease induced by periphyton. With periphyton, more Cd was adsorbed and immobilized on organic matter, carbonates, and iron and manganese oxides in soil. Consequently, Cd content in rice decreased significantly. These findings give insights into Cd biogeochemistry in paddy fields with periphyton, and may provide a novel strategy for reducing Cd accumulation in rice.
Mostrar más [+] Menos [-]Microplastic particles increase arsenic toxicity to rice seedlings
2020
Dong, Youming | Gao, Minling | Song, Zhengguo | Qiu, Weiwen
Hydroponic experiments were conducted to study the effects of microplastic particles of polystyrene (PS) and polytetrafluoroethylene (PTFE) on arsenic (As) content in leaves and roots of rice seedlings, and the changes in root vigor and physiological and biochemical indicators under single or combined PS and PTFE with As(III) treatment. Rice biomass decreased with increasing concentrations of PS, PTFE, and As(III) in the growth medium. The highest root (leaf) biomass decreases were 21.4% (10.2%), 25.4% (11.8%), and 26.2% (16.2%) with the addition of 0.2 g L⁻¹ PS, 0.2 g L⁻¹ PTFE, and 4 mg L⁻¹ As(III), respectively. Microplastic particles and As(III) inhibited biomass accumulation by inhibiting root activity and RuBisCO activity, respectively. The addition of As(III) and microplastic particles (PS or PTFE) inhibited photosynthesis through non-stomatal and stomatal factors, respectively; furthermore, net photosynthetic rate, chlorophyll fluorescence, and the Chl a content of rice were reduced with the addition of As(III) and microplastic particles (PS or PTFE). Microplastic particles and As(III) induced an oxidative burst in rice tissues through mechanical damage and destruction of the tertiary structure of antioxidant enzymes, respectively, thereby increasing O₂⁻ and H₂O₂ in roots and leaves, inducing lipid peroxidation, and destroying cell membranes. When PS and PTFE were added at 0.04 and 0.1 g L⁻¹, respectively, the negative effects of As(III) on rice were reduced. Treatment with 0.2 g L⁻¹ PS or PTFE, combined with As(III), had a higher impact on rice than the application of As(III) alone. PS and PTFE reduced As(III) uptake, and absorbed As decreased with the increasing concentration of microparticles. The underlying mechanisms for these effects may involve direct adsorption of As, competition between As and microplastic particles for adsorption sites on the root surface, and inhibition of root activity by microplastic particles.
Mostrar más [+] Menos [-]Assessment of cadmium and lead contamination in rice farming soils and rice (Oryza sativa L.) from Guayas province in Ecuador
2020
Ochoa, Martín | Tierra, Wladimir | Tupuna-Yerovi, Diego Santiago | Guanoluisa, Danilo | Otero, Xosé Luis | Ruales, Jenny
Rice is the world’s most consumed and in-demand grain. Ecuador is one of the main rice-consuming countries in Latin America, with an average per capita consumption of 53.2 kg per year. Rice cultivation takes place under flooding conditions, which favors the mobilization and subsequent accumulation of heavy metals in the plant. This study’s principal objective was to evaluate the contamination of cadmium (Cd) and lead (Pb) in the rice cultivation system in the province of Guayas. To this end, extensive sampling of water, soil and rice grains was carried. Water samples were analyzed to determine physicochemical properties and concentrations of dissolved Cd and Pb. Physicochemical properties, total organic carbon (TOC), total content of nitrogen (N), iron (Fe), manganese (Mn), phosphorus (P), bioavailable phosphorus (P mehlich), Cd and Pb were determined in soil samples. In addition, to understand the dynamics of Cd and Pb mobility and bioavailability, an extraction of six randomly selected soil samples was carried out. The concentration values of the total Cd and Pb content in the rice cultivation system did not exceed the maximum recommended limit for soil, water and rice grains. However, 85% of the total Cd was in the soluble or exchangeable fraction of the soil, while the Pb was strongly bound to crystalline iron oxyhydroxides. It was established that the TOC, N, Fe, and P mehlich have a significant correlation (p < 0.05) with the overall concentration of Cd and Pb in the rice farming soil. The Cd and Pb present in rice do not represent a dietary health risk to the population of Ecuador.
Mostrar más [+] Menos [-]The effect of straw-returning on antimony and arsenic volatilization from paddy soil and accumulation in rice grains
2020
Yan, HuiJun | Wang, Xuedong | Yang, Yuping | Duan, GuiLan | Zhang, Hongmei | Cheng, WangDa
Pollution by antimony (Sb) and arsenic (As) in soil can pose a great threat to human health. Straw-returning is widely applied to paddy fields for improving and remediating soil. A pot experiment was conducted to investigate the effect of straw-returning on Sb and As transformation and translocation in a soil–rice system. In this study, Sb and As co-contaminated soil was thoroughly mixed with different proportions (0, 0.5, 1, and 2%) of straw and used for growing rice plants through the entire growing stage in a pot experiment and 4 weeks in a microcosm experiment. The straw application significantly increased Sb and As mobility. The concentrations of total Sb and As in soil-pore water increased after the application of straw in most growing stages. The Sb volatilization in the pot and microcosm experiments was also stimulated by straw application. With the high dose of straw application (2%), the concentration of Sb in brown grain was reduced by 72% compared with the control, but As concentrations increased by around 77%. These findings provide a new perspective in that straw-returning could affect the behavior of both Sb and As in soil and reduce the Sb accumulation in brown grain and some guidance in the use of straw-returning in Sb-contaminated paddy soil.
Mostrar más [+] Menos [-]