Refinar búsqueda
Resultados 1-10 de 33
Lead, mercury, and selenium alter physiological functions in wild caimans (Caiman crocodilus)
2021
Lemaire, Jérémy | Bustamante, Paco | Mangione, R. | Marquis, O. | Churlaud, C. | Brault-Favrou, Maud | Parenteau, Charline | Brischoux, Francois | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | LIttoral ENvironnement et Sociétés (LIENSs) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Division of Behavioural Ecology, Institute of Ecology and Evolution [Hinterkappelen, Switzerland] ; Universität Bern = University of Bern = Université de Berne (UNIBE) | Sorbonne Université (SU)
International audience | Environmental contaminants affect ecosystems worldwide and have deleterious effects on biota. Non-essentialmercury (Hg) and lead (Pb) concentrations are well documented in some taxa and are described to cause multipledetrimental effects on human and wildlife. Additionally, essential selenium (Se) is known to be toxic at highconcentrations but, at lower concentrations, Se can protect organisms against Hg toxicity. Crocodilians areknown to bioaccumulate contaminants. However, the effects of these contaminants on physiological processesremain poorly studied. In the present study, we quantified Hg, Pb and Se concentrations in spectacled caimans(Caiman crocodilus) and investigated the effects of these contaminants on several physiological processes linkedto osmoregulatory, hepatic, endocrine and renal functions measured through blood parameters in 23 individuals.Mercury was related to disruption of osmoregulation (sodium levels), hepatic function (alkaline phosphataselevels) and endocrine processes (corticosterone levels). Lead was related to disruption of hepatic functions(glucose and alanine aminotransferase levels). Selenium was not related to any parameters, but the Se:Hg molarratio was positively related to the Na+ and corticosterone concentrations, suggesting a potential protective effectagainst Hg toxicity. Overall, our results suggest that Hg and Pb alter physiological mechanisms in wild caimansand highlight the need to thoroughly investigate the consequences of trace element contamination incrocodilians.
Mostrar más [+] Menos [-]1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies
2021
Hani, Younes Mohamed Ismail | Prud’Homme, Sophie Martine | Nuzillard, Jean-Marc | Bonnard, Isabelle | Robert, Christelle | Nott, Katherine | Ronkart, Sébastien | Dedourge-Geffard, Odile | Geffard, Alain
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières “CM” in France, Namur “Nam” and Charleroi “Cr” in Belgium). The aim was to test ¹H-NMR metabolomics for the assessment of water bodies’ quality. The metabolomic approach was combined with a more “classical” one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and ¹H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Mostrar más [+] Menos [-]Physiological plasticity and acclimatory responses to salinity stress are ion-specific in the mayfly, Neocloeon triangulifer
2021
Orr, Sarah E. | Negrão Watanabe, Tatiane Terumi | Buchwalter, David B.
Freshwater salinization is a rapidly emerging ecological issue and is correlated with significant declines in aquatic biodiversity. It remains unclear how changing salinity regimes affect the physiology of sensitive aquatic insects. We used the parthenogenetic mayfly, Neocloeon triangulifer, to ask how ionic exposure history alters physiological processes and responses to subsequent major ion exposures. Using radiotracers (²²Na, ³⁵SO₄, and ⁴⁵Ca), we observed that mayflies chronically reared in elevated sodium or sulfate (157 mg L⁻¹ Na or 667 mg L⁻¹ SO₄) had 2-fold (p < 0.0001) and 8-fold (p < 0.0001) lower ion uptake rates than mayflies reared in dilute control water (16 mg L⁻¹ Na and 23 mg L⁻¹ SO₄) and subsequently transferred to elevated salinities, respectively. These acclimatory ion transport changes provided protection in 96-h toxicity bioassays for sodium, but not sulfate. Interestingly, calcium uptake was uniformly much lower and minimally influenced by exposure history, but was poorly tolerated in the toxicity bioassays. With qRT-PCR, we observed that the expression of many ion transporter genes in mayflies was influenced by elevated salinity in an ion-specific manner (general upregulation in response to sulfate, downregulation in response to calcium). Elevated sodium exposure had minimal influence on the same genes. Finally, we provide novel light microscopic evidence of histomorphological changes within the epithelium of the Malpighian tubules (insect primary excretory system) that undergoes cellular degeneration and necrosis secondary to calcium toxicity. We conclude that physiological plasticity to salinity stress is ion-specific and provide evidence for ion-specific toxicity mechanisms in N. triangulifer.
Mostrar más [+] Menos [-]NMR-based metabolic toxicity of low-level Hg exposure to earthworms
2018
Tang, Ronggui | Ding, Changfeng | Dang, Fei | Ma, Yibing | Wang, Junsong | Zhang, Taolin | Wang, Xingxiang
Mercury is a globally distributed toxicant to aquatic animals and mammals. However, the potential risks of environmental relevant mercury in terrestrial systems remain largely unclear. The metabolic profiles of the earthworm Eisenia fetida after exposure to soil contaminated with mercury at 0.77 ± 0.09 mg/kg for 2 weeks were investigated using a two-dimensional nuclear magnetic resonance-based (¹H-¹³C NMR) metabolomics approach. The results revealed that traditional endpoints (e.g., mortality and weight loss) did not differ significantly after exposure. Although histological examination showed sub-lethal toxicity in the intestine as a result of soil ingestion, the underlying mechanisms were unclear. Metabolite profiles revealed significant decreases in glutamine and 2-hexyl-5-ethyl-3-furansulfonate in the exposed group and remarkable increases in glycine, alanine, glutamate, scyllo-inositol, t-methylhistidine and myo-inositol. More importantly, metabolic network analysis revealed that low mercury in the soil disrupted osmoregulation, amino acid and energy metabolisms in earthworms. A metabolic net link and schematic diagram of mercury-induced responses were proposed to predict earthworm responses after exposure to mercury at environmental relevant concentrations. These results improved the current understanding of the potential toxicity of low mercury in terrestrial systems.
Mostrar más [+] Menos [-]Salinisation of rivers: An urgent ecological issue
2013
Cañedo-Argüelles, Miguel | Kefford, Ben J. | Piscart, Christophe | Prat i Fornells, Narcís | Schäfer, Ralf B. | Schulz, Claus-Jürgen
Secondary salinisation of rivers and streams is a global and growing threat that might be amplified by climate change. It can have many different causes, like irrigation, mining activity or the use of salts as de-icing agents for roads. Freshwater organisms only tolerate certain ranges of water salinity. Therefore secondary salinisation has an impact at the individual, population, community and ecosystem levels, which ultimately leads to a reduction in aquatic biodiversity and compromises the goods and services that rivers and streams provide. Management of secondary salinization should be directed towards integrated catchment strategies (e.g. benefiting from the dilution capacity of the rivers) and identifying threshold salt concentrations to preserve the ecosystem integrity. Future research on the interaction of salinity with other stressors and the impact of salinization on trophic interactions and ecosystem properties is needed and the implications of this issue for human society need to be seriously considered.
Mostrar más [+] Menos [-]Road salt compromises functional morphology of larval gills in populations of an amphibian
2022
Szeligowski, Richard V. | Scanley, Jules A. | Broadbridge, Christine C. | Brady, Steven P.
Across the planet, winter de-icing practices have caused secondary salinization of freshwater habitats. Many amphibians are vulnerable because of permeable skin and reliance on small ponds, where salinity can be high. Early developmental stages of amphibians are especially sensitive to salt, and larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. Though ionoregulation in amphibian gills is generally understood, the role of gill morphology remains poorly described. Yet gill structure should affect ionoregulatory capacity, for instance in terms of available surface area. As larval amphibian gills also play critical roles in gas exchange and foraging, changes in gill morphology from salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used an exposure experiment to quantify salinity effects on larval gill morphology in wood frogs (Rana sylvatica). We measured a suite of morphological traits on gill tufts—where ionoregulation and gas exchange occur—and on gill filters used in feeding. Larvae raised in elevated salinity developed larger gill tufts but with lower surface area to volume ratio. Epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, likely reducing feeding efficiency. Many morphological gill traits responded quadratically, suggesting that salinity might induce plasticity in gills at intermediate concentrations until energetic demands exceed plasticity. Together, these changes likely diminish ionoregulatory and respiratory functionality of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in aquatic environment from a widespread pollutant appears to generate a suite of consequences via changes in gill morphology. Critically, these changes in traits likely compound the severity of fitness impacts in populations dwelling in salinized environments, whereby ionoregulatory energetic demands should increase respiratory and foraging demands, but in individuals who possess structures poorly adapted for these functions.
Mostrar más [+] Menos [-]Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions
2022
Ersoy, Zeynep | Abril, Meritxell | Cañedo-Argüelles, Miguel | Espinosa, Carmen Gertrudis | Vendrell-Puigmitja, Lidia | Proia, Lorenzo
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L⁻¹ was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.
Mostrar más [+] Menos [-]Chronic nitrate exposure cause alteration of blood physiological parameters, redox status and apoptosis of juvenile turbot (Scophthalmus maximus)
2021
Yu, Jiachen | Xiao, Yongshuang | Wang, Yanfeng | Xu, Shihong | Zhou, Li | Li, Jun | Li, Xian
Nitrate (NO₃⁻) is one of the common inorganic nitrogen compound pollutants in natural ecosystems, which may have serious risks for aquatic organisms. However, its toxicological mechanism remains unclear. In the current study, juvenile turbot (Scophthalmus maximus) were exposed to different concentrations of NO₃⁻ (CK− 3.57 ± 0.16, LN − 60.80 ± 1.21, MN − 203.13 ± 10.97 and HN − 414.16 ± 15.22 mg/L NO₃–N) for 60 d. The blood biochemical assays results revealed that elevated NO₃⁻ exposure significantly increased the concentrations of plasma NO₃⁻, NO₂⁻, MetHb, K⁺, cortisol, glucose, triglyceride, lactate, while significantly decreased the concentrations of plasma Hb, Na⁺ and Cl⁻, which meant that NO₃⁻ caused hypoxic stress and further affected the osmoregulation and metabolism in fish. Besides, exposure to MN and HN induced a significant decrease in the level of antioxidants, including SOD (Point: 60th day, MN, HN v.s. CK: 258.36, 203.73 v.s. 326.95 U/mL), CAT (1.97, 1.17 v.s. 2.37 U/mL), GSH (25.38, 20.74 v.s. 37.00 μmol/L), and GPx (85.32, 71.46 v.s. 129.36 U/mL), and a significant increase of MDA (7.54, 9.73 v.s. 5.27 nmol/L), suggesting that NO₃⁻ exposure leading to a disruption of the redox status in fish. Also, further research revealed that NO₃⁻ exposure altered the mRNA levels of p53 (HN: up to 4.28 folds) and p53-regulated downstream genes such as Bcl-2 (inferior to 0.44 folds), caspase-3 (up to 2.90 folds) and caspase-7 (up to 3.49 folds), indicating that NO₃⁻ exposure induced abnormal apoptosis in the fish gills. Moreover, IBRv2 analysis showed that the toxicity of NO₃⁻ exposure to turbot was dose-dependent, and the toxicity peaked on the 15th day. In short, NO₃⁻ is an environmental toxicological factor that cannot be ignored, because its toxic effects are long-term and could cause irreversible damage to fish. These results would be beneficial to improve our understanding of the toxicity mechanism of NO₃⁻ to fish, which provides baseline evidence for the risk assessment of environmental NO₃⁻ in aquatic ecosystems.
Mostrar más [+] Menos [-]Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils
2017
Xu, Zhi-Min | Li, Qu-Sheng | Yang, Ping | Ye, Han-Jie | Chen, Zi-Shuo | Guo, Shi-Hong | Wang, Lili | He, Bao-Yan | Zeng, E. Y. (Eddy Y.)
This study aimed to investigate the difference of osmoregulation between two edible amaranth cultivars, Liuye (high Cd accumulator) and Quanhong (low Cd accumulator), under salinity stress and determine the effects of such difference on Cd accumulation. A pot experiment was conducted to expose the plants to sewage-irrigated garden soil (mean 2.28 mg kg⁻¹ Cd) pretreated at three salinity levels. Under salinity stress, the concentrations of Cd in the two cultivars were significantly elevated compared with those in the controls, and the Cd concentration in Liuye was statistically higher than that in Quanhong (p < 0.05). Salinity-induced osmoregulation triggered different biogeochemical processes involved in Cd mobilization in the rhizosphere soil, Cd absorption, and translocation by the two cultivars. Rhizosphere acidification induced by an imbalance of cation over anion uptake was more serious in Liuye than in Quanhong, which obviously increased soil Cd bioavailability. Salinity-induced injuries in the cell wall pectin and membrane structure were worse in Liuye than in Quanhong, increasing the risk of Cd entering the protoplasts. The chelation of more cytoplasmic Cd²⁺ with Cl⁻ ions in the roots of Liuye promoted Cd translocation into the shoots. Furthermore, the less organic solutes in the root sap of Liuye than in that of Quanhong also favored Cd translocation into the shoots. Hence, osmoregulation processes can be regarded as important factors in reducing Cd accumulation in crop cultivars grown on saline soils.
Mostrar más [+] Menos [-]Ecotoxicoproteomic assessment of the functional alterations caused by chronic metallic exposures in gammarids
2017
Gismondi, E. | Thomé, J.-P. | Urien, N. | Uher, E. | Baiwir, D. | Mazzucchelli, G. | De Pauw, E. | Fechner, L.C. | Lebrun, J.D.
Very few ecotoxicological studies have been performed on long-term exposure under controlled conditions, hence limiting the assessment of the impact of chronic and diffuse chemical pressures on the health of aquatic organisms. In this study, an ecotoxicoproteomic approach was used to assess the integrated response and possible acclimation mechanisms in Gammarus fossarum following chronic exposures to Cd, Cu or Pb, at environmentally realistic concentrations (i.e. 0.25, 1.5 and 5 μg/L respectively). After 10-week exposure, changes in protein expression were investigated in caeca of control and exposed males. Gel-free proteomic analyses allowed for the identification of 35 proteins involved in various biological functions, for which 23 were significantly deregulated by metal exposures. The protein deregulation profiles were specific to each metal, providing evidence for metal-specific action sites and responses of gammarids. Among the tested metals, Cu was the most toxic in terms of mortality, probably linked with persistent oxidative stress. Moulting and osmoregulation were the major biological functions affected by Cu in the long-term. In Pb-exposed gammarids, significant deregulations of proteins involved in immune response and cytoskeleton were observed. Reproduction appears to be strongly affected in gammarids chronically exposed to Cd or Pb. Besides, modified expressions of several proteins involved in energy transfer and metabolism highlighted important energetic reshuffling to cope with chronic metal exposures. These results support the fact that metallic pressures induce a functional and energetic cost for individuals of G. fossarum with potential repercussions on population dynamics. Furthermore, this ecotoxicoproteomic study offers promising lines of enquiry in the development of new biomarkers that could make evidence of long-term impacts of metals on the health of organisms.
Mostrar más [+] Menos [-]