Refinar búsqueda
Resultados 1-10 de 75
Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos
2021
Lee, Hyojin | Ko, Eun | Shin, Sooim | Choi, Moonsung | Kim, Ki-Tae
Organochlorine pesticides (OCPs) have been reported to cause mitochondrial dysfunction. However, most studies reported its mitochondrial toxicity with respect to a single form, which is far from the environmentally relevant conditions. In this study, we exposed zebrafish embryos to five OCPs: chlordane, heptachlor, p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT), β-hexachlorocyclohexane (β-HCH), and hexachlorobenzene (HCB), as well as an equal ratio mixture of these OCPs. We evaluated mitochondrial function, including oxygen consumption, the activity of mitochondrial complexes, antioxidant reactions, and expression of genes involved in mitochondrial metabolism. Oxygen consumption rate was reduced by exposure to chlordane, and β-HCH, linking to the increased activity of specific mitochondrial complex I and III, and decreased GSH level. We found that these mitochondrial dysfunctions were more significant in the exposure to the OCP mixture than the individual OCPs. On the mRNA transcription level, the individual OCPs mainly dysregulated the metabolic cycle (i.e., cs and acadm), whereas the OCP mixture disrupted the genes related to mitochondrial oxidative phosphorylation (i.e., sdha). Consequently, we demonstrate that the OCP mixture disrupts mitochondrial metabolism by a different molecular mechanism than the individual OCPs, which warrants further study to evaluate mitochondrial dysregulation by chronic exposure to the OCP mixture.
Mostrar más [+] Menos [-]Elevated nitrate alters the metabolic activity of embryonic zebrafish
2018
Conlin, Sarah M. | Tudor, M Scarlett | Shim, Juyoung | Gosse, Julie A. | Neilson, Andrew | Hamlin, Heather J.
Nitrate accumulation in aquatic reservoirs from agricultural pollution has often been overlooked as a water quality hazard, yet a growing body of literature suggests negative effects on human and wildlife health following nitrate exposure. This research seeks to understand differences in oxygen consumption rates between different routes of laboratory nitrate exposure, whether via immersion or injection, in zebrafish (Danio rerio) embryos. Embryos were exposed within 1 h post fertilization (hpf) to 0, 10, and 100 mg/L NO₃-N with sodium nitrate, or to counter ion control (CIC) treatments using sodium chloride. Embryos in the immersion treatments received an injection of 4 nL of appropriate treatment solution into the perivitelline space. At 24 hpf, Oxygen Consumption Rates (OCR) were measured and recorded in vivo using the Agilent Technologies XFᵉ96 Extracellular Flux Analyzer and Spheroid Microplate. Immersion exposures did not induce significant changes in OCR, yet nitrate induced significant changes when injected through the embryo chorion. Injection of 10 and 100 mg/L NO₃-N down-regulated OCR compared to the control treatment group. Injection of the 100 mg/L CIC also significantly down-regulated OCR compared to the control treatment group. Interestingly, the 100 mg/L NO₃-N treatment further down-regulated OCR compared to the 100 mg/L CIC treatment, suggesting the potential for additive effects between the counter ion and the ion of interest. These data support that elevated nitrate exposure can alter normal metabolic activity by changing OCR in 24 hpf embryos. These results highlight the need for regularly examining the counter ion of laboratory nitrate compounds while conducting research with developing zebrafish, and justify examining different routes of laboratory nitrate exposure, as the chorion may act as an effective barrier to nitrate penetration in zebrafish, which may lead to conservative estimates of significant effects in other species for which nitrate more readily penetrates the chorion.
Mostrar más [+] Menos [-]Impact of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges
2018
Fang, James K.H. | Rooks, Christine A. | Krogness, Cathinka M. | Kutti, Tina | Hoffmann, Friederike | Bannister, Raymond J.
To meet the increasing global energy demand, expanding exploration for oil and gas reserves as well as associated drilling activities are expected in the Arctic-boreal region where sponge aggregations contribute to up to 90% of benthic biomass. These deep-water sponges along with their microbial endobionts play key roles in the nitrogen cycling in Arctic-boreal ecosystems. This study aimed to investigate the effects of drilling discharges and associated sediment resuspension events on net fluxes of oxygen, ammonium, nitrate and nitrite in three common deep-water sponge species in the form of explants. Sponges were exposed to suspended bentonite and barite, the primary particulate compounds in drilling waste, as well as suspended natural sediment particles for a period of 33 days (on average 10 mg L−1 for 12 h day−1). The exposure period was followed by a pollution abatement period for a further 33 days. No sponge mortality was observed during the experiment. However, exposure to these particles, especially to barite, led to reduced oxygen consumption by up to 33% that was linearly correlated with reduced nitrite/nitrate release by the sponges. The changes in net fluxes were accompanied by decreased tissue oxygenation by up to 54% within the sponges. These findings reveal the effects of fine particles on sponge metabolic processes by reducing aerobic respiration and microbial nitrification, and possibly by favouring anaerobic processes such as microbial denitrification. Most of the sponge responses recovered to their control levels upon the pollution abatement period, but the effects caused by barite may not be reversible. Our findings provide the first insight into the ecological consequences of oil and gas drilling activities on sponge-mediated nitrogen cycling in the Arctic-boreal region.
Mostrar más [+] Menos [-]Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving
2016
Underwater sound generated by pile driving during construction of offshore wind farms is a major concern in many countries. This paper reports on the acoustic stress responses in young European sea bass Dicentrarchus labrax (68 and 115 days old), based on four in situ experiments as close as 45 m from a pile driving activity. As a primary stress response, whole-body cortisol seemed to be too sensitive to ‘handling’ bias. On the other hand, measured secondary stress responses to pile driving showed significant reductions in oxygen consumption rate and low whole-body lactate concentrations. Furthermore, repeated exposure to impulsive sound significantly affected both primary and secondary stress responses. Under laboratory conditions, no tertiary stress responses (no changes in specific growth rate or Fulton's condition factor) were noted in young sea bass 30 days after the treatment. Still, the demonstrated acute stress responses and potentially repeated exposure to impulsive sound in the field will inevitably lead to less fit fish in the wild.
Mostrar más [+] Menos [-]Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination
2009
Lagauzère, S. | Pischedda, L. | Cuny, P. | Polley, F. Gilbert | Stora, G. | Bonzom, J.M.
The diffusive oxygen uptake (DOU) of sediments inhabited by Chironomus riparius and Tubifex tubifex was investigated using a planar oxygen optode device, and complemented by measurements of bioturbation activity. Additional experiments were performed within contaminated sediments to assess the impact of uranium on these processes. After 72 h, the two invertebrate species significantly increased the DOU of sediments (13-14%), and no temporal variation occurred afterwards. Within contaminated sediments, it was already 24% higher before the introduction of the organisms, suggesting that uranium modified the sediment biogeochemistry. Although the two species firstly reacted by avoidance of contaminated sediment, they finally colonized it. Their bioturbation activity was reduced but, for T. tubifex, it remained sufficient to induce a release of uranium to the water column and an increase of the DOU (53%). These results highlight the necessity of further investigations to take into account the interactions between bioturbation, microbial metabolism and pollutants. This study highlights the ecological importance of bioturbation in metal-contaminated sediments.
Mostrar más [+] Menos [-]Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod
2022
Manríquez, Patricio H. | Jara, María Elisa | González, Claudio P. | Jeno, Katherine | Domenici, P. (Paolo) | Watson, Sue-Ann | Duarte, Cristian | Brokordt, Katherina
To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.
Mostrar más [+] Menos [-]Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas
2021
Aimon, Cassandre | Simpson, Stephen D. | Hazelwood, Richard A. | Bruintjes, Rick | Urbina, Mauricio A.
Acoustic pollution in aquatic environments has increased with adverse effects on many aquatic organisms. However, little work has been done considering the effects of the vibratory component of acoustic stimuli, which can be transmitted in the substrate and propagated into the aquatic medium. Benthic marine organisms, including many invertebrates, are capable of sensing seabed vibration, yet the responses they trigger on organism have received little attention. This study investigates the impact of underwater vibration on the physiology and behaviour of a ubiquitous inhabitant of coastal areas of the northern hemisphere, the shore crab Carcinus maenas. We developed a novel vibratory apparatus with geophones supported on a softly sprung frame to induce a seabed vibration of 20 Hz frequency, as observed during dredging, piling and other anthropogenic activities. The geophone internal mass caused the frame to vibrate in a controlled manner. Our results show that transition from ambient to anthropogenic vibrations induced an increase in activity and antennae beats in shore crabs, indicating perception of the vibratory stimulus and a higher stress level. There was also a trend on sex-specific responses to anthropogenic vibration, with males showing a higher activity level than females. However, no effect of anthropogenic vibrations was found upon oxygen consumption. These results show that anthropogenic underwater vibration induces behavioural responses in Carcinus maenas. This highlights the importance of evaluating man-made vibratory activities on coastal invertebrates and the necessity of evaluating anthropogenic effects on both sexes.
Mostrar más [+] Menos [-]Lead accumulation in photosynthetic Euglena gracilis depends on polyphosphates and calcium
2021
Hernández-Garnica, M. | García-García, J.D. | Moreno-Sánchez, R. | Sánchez-Thomas, R.
Worldwide increasing levels of lead in water systems require the search for efficient ecologically friendly strategies to remove it. Hence, lead accumulation by the free-living algae-like Euglena gracilis and its effects on cellular growth, respiration, photosynthesis, chlorophyll, calcium, and levels of thiol- and phosphate-molecules were analyzed. Photosynthetic cells were able to accumulate 4627 mg lead/kgDW after 5 days of culture with 200 μM Pb²⁺. Nevertheless, exposure to 50, 100 and 200 μM Pb²⁺ for up to 8 days did not modify growth, viability, chlorophyll content and oxygen consumption/production. Enhanced biosynthesis of thiol molecules and polyphosphates, i.e. the two canonical metal ion chelation mechanisms in E. gracilis, was not induced under such conditions. However, in cells cultured in the absence of phosphate, lead accumulation and polyphosphate content markedly decreased, while culturing in the absence of sulfate did not modify the accumulation of this metal. In turn, the total amount of intracellular calcium slightly increased as the amount of intracellular lead increased, whereas under Ca²⁺ deficiency lead accumulation doubled. Therefore, the results indicated that E. gracilis is highly resistant to lead through mechanisms mediated by polyphosphates and Ca²⁺ and can in fact be classified as a lead hyperaccumulator microorganism.
Mostrar más [+] Menos [-]Polyvinylpyrolidone-functionalized silver nanoparticles do not affect aerobic performance or fractional rates of protein synthesis in rainbow trout (Oncorhynchus mykiss)
2020
Ollerhead, K.M. | Adams, O.A. | Willett, N.J. | Gates, M.A. | Bennett, J.C. | Murimboh, J. | Morash, A.J. | Lamarre, S.G. | MacCormack, T.J.
Aerobic performance in fish is linked to individual and population fitness and can be impacted by anthropogenic contaminants. Exposure to some engineered nanomaterials, including silver nanoparticles (nAg), reduces rates of oxygen consumption in some fish species, but the underlying mechanisms remain unclear. In addition, their effects on swim performance have not been studied. Our aim was to quantify the impact of exposure to functionalized nAg on aerobic scope and swim performance in rainbow trout (Oncorhychus mykiss) and to characterize the contribution of changing rates of protein synthesis to these physiological endpoints. Fish were exposed for 48 h to 5 nm polyvinylpyrolidone-functionalized nAg (nAgPVP; 100 μg L⁻¹) or 0.22 μg L⁻¹ Ag⁺ (as AgNO₃), which was the measured quantity of Ag released from the nAgPVP over that time period. Aerobic scope, critical swimming speed (Ucᵣᵢₜ), and fractional rates of protein synthesis (Kₛ), were then assessed, along with indicators of osmoregulation and cardiotoxicity. Neither nAgPVP, nor Ag⁺ exposure significantly altered aerobic scope, its component parts, or swim performance. Kₛ was similarly unaffected in 8 tissue types, though it tended to be lower in liver of nAgPVP treated fish. The treatments tended to decrease gill Na⁺/K⁺-ATPase activity, but effects were not significant. The latter results suggest that a longer or more concentrated nAgPVP exposure may induce significant effects. Although this same formulation of nAgPVP is bioactive in other fish, it had no effects on rainbow trout under the conditions tested. Such findings on common model animals like trout may thus misrepresent the safety of nAg to more sensitive species.
Mostrar más [+] Menos [-]Effects of suspended mineral coal dust on the energetic physiology of the Caribbean scallop Argopecten nucleus (Born, 1778)
2020
Benitez-Polo, Z. | Velasco, L.A.
The effects of increasing concentrations of suspended mineral coal dust on the energetic physiology of the Caribbean scallop Argopecten nucleus were studied, at a concentration range that is environmentally relevant and representative of areas proximate to coal loading and shipping ports. Adult hatchery-produced animals were exposed to different concentrations of coal dust, i.e. 0, 2, 9 and 40 mg L⁻¹. At increasing concentrations of coal dust, the rates of filtration and pseudofeces production increased, while the rates of ingestion and absorption remained constant. The rates of oxygen consumption and ammonium excretion decreased, as well as the absorption efficiency and the scope for growth. Suspended coal dust particles, at concentrations higher than or equal to 2 mg L⁻¹, were ingested preferentially over microalgae by A. nucleus, causing reductions in its absorption capability, metabolism and in the amount of energy for growth and reproduction, thus generating physiological stress.
Mostrar más [+] Menos [-]