Refinar búsqueda
Resultados 1-10 de 28
Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice
2019
Rude, Kavi M. | Pusceddu, Matteo M. | Keogh, Ciara E. | Sladek, Jessica A. | Rabasa, Gonzalo | Miller, Elaine N. | Sethi, Sunjay | Keil, Kimberly P. | Pessah, Isaac N. | Lein, Pamela J. | Gareau, Mélanie G.
The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca²⁺ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170–200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0–6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28–P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1β, and Il22), and resulted in dysbiosis of the gut microbiota, including altered β-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.
Mostrar más [+] Menos [-]Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff
2018
McIntyre, Jenifer K. | Lundin, Jessica I. | Cameron, James R. | Chow, Michelle I. | Davis, Jay W. | Incardona, John P. | Scholz, Nathaniel L.
Adult coho salmon (Oncorhynchus kisutch) prematurely die when they return from the ocean to spawn in urban watersheds throughout northwestern North America. The available evidence suggests the annual mortality events are caused by toxic stormwater runoff. The underlying pathophysiology of the urban spawner mortality syndrome is not known, and it is unclear whether closely related species of Pacific salmon are similarly at risk. The present study co-exposed adult coho and chum (O. keta) salmon to runoff from a high traffic volume urban arterial roadway. The spawners were monitored for the familiar symptoms of the mortality syndrome, including surface swimming, loss of orientation, and loss of equilibrium. Moreover, the hematology of both species was profiled by measuring arterial pH, blood gases, lactate, plasma electrolytes, hematocrit, and glucose. Adult coho developed behavioral symptoms within a few hours of exposure to stormwater. Various measured hematological parameters were significantly altered compared to coho controls, indicating a blood acidosis and ionoregulatory disturbance. By contrast, runoff-exposed chum spawners showed essentially no indications of the mortality syndrome, and measured blood hematological parameters were similar to unexposed chum controls. We conclude that contaminant(s) in urban runoff are the likely cause of the disruption of ion balance and pH in coho but not chum salmon. Among the thousands of chemicals in stormwater, future forensic analyses should focus on the gill or cardiovascular system of coho salmon. Because of their distinctive sensitivity to urban runoff, adult coho remain an important vertebrate indicator species for degraded water quality in freshwater habitats under pressure from human population growth and urbanization.
Mostrar más [+] Menos [-]Polychlorinated biphenyls and its potential role in endometriosis
2017
Yao, Mengyun | Hu, Tingting | Wang, Yinfeng | Du, Yongjiang | Hu, Changchang | Wu, Ruijin
With the progress of global industrialization and environmental deterioration, the relationship between human health and the living environment has become an increasing focus of attention. Polychlorinated biphenyls (PCBs, including dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls), as part of the organic chlorine contaminants, have been suspected as playing a role in the etiopathogenesis of endometriosis. Several population-based studies have proposed that exposure to PCBs may increase the risk of developing endometriosis, while some epidemiological studies have failed to find any association between PCBs and endometriosis. The purpose of this review is to discuss the potential pathophysiological relationship between endometriosis and PCBs with a focus on both dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls.
Mostrar más [+] Menos [-]Smoke and the eyes: A review of the harmful effects of wildfire smoke and air pollution on the ocular surface
2022
Jaiswal, Sukanya | Jalbert, Isabelle | Schmid, Katrina | Tein, Natasha | Wang, Sarah | Golebiowski, Blanka
Wildfires are occurring worldwide with greater frequency and intensity. Wildfires, as well as other sources of air pollution including environmental tobacco smoke, household biomass combustion, agricultural burning, and vehicular emissions, release large amounts of toxic substances into the atmosphere. The ocular surface is constantly exposed to the ambient air and is hence vulnerable to damage from air pollutants. This review describes the detrimental effects of wildfire smoke and air pollution on the ocular surface and resultant signs and symptoms. The latest relevant evidence is synthesised and critically evaluated. A mechanism for the pathophysiology of ocular surface damage will be proposed considering the existing literature on respiratory effects of air pollution. Current strategies to reduce human exposure to air pollutants are discussed and specific possible approaches to protect the ocular surface and manage air pollution induced ocular surface damage are suggested. Further avenues of research are suggested to understand how acute and chronic air pollution exposure affects the ocular surface including the short and long-term implications.
Mostrar más [+] Menos [-]Short-term exposure to air pollution and biomarkers of cardiovascular effect: A repeated measures study
2021
Ni, Yu | Tracy, Russell P. | Cornell, Elaine | Kaufman, Joel D. | Szpiro, Adam A. | Campen, Matthew J. | Vedal, Sverre
To help understand the pathophysiologic mechanisms linking air pollutants and cardiovascular disease (CVD), we employed a repeated measures design to investigate the associations of four short-term air pollution exposures – particulate matter less than 2.5 μm in diameter (PM₂.₅), nitrogen dioxide (NO₂), ozone (O₃) and sulfur dioxide (SO₂), with two blood markers involved in vascular effects of oxidative stress, soluble lectin-like oxidized LDL receptor-1 (sLOX-1) and nitrite, using data from the Multi-Ethnic Study of Atherosclerosis (MESA). Seven hundred and forty participants with plasma sLOX-1 and nitrite measurements at three exams between 2002 and 2007 were included. Daily PM₂.₅, NO₂, O₃ and SO₂ zero to seven days prior to blood draw were estimated from central monitors in six MESA regions, pre-adjusted using site-specific splines of meteorology and temporal trends, and an indicator for day of the week. Unconstrained distributed lag generalized estimating equations were used to estimate net effects over eight days with adjustment for sociodemographic and behavioral factors. The results showed that higher short-term concentrations of PM₂.₅, but not other pollutants, were associated with increased sLOX-1 analyzed both as a continuous outcome (percent change per interquartile increase: 16.36%, 95%CI: 0.1–35.26%) and dichotomized at the median (odds ratio per interquartile increase: 1.21, 95%CI: 1.01–1.44). The findings were not meaningfully changed after adjustment for additional covariates or in several sensitivity analyses. Pollutant concentrations were not associated with nitrite levels. This study extends earlier experimental findings of increased sLOX-1 levels following PM inhalation to a much larger population and at ambient concentrations. In light of its known mechanistic role in promoting vascular disease, sLOX-1 may be a suitable translational biomarker linking air pollutant exposures and cardiovascular outcomes.
Mostrar más [+] Menos [-]Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA
2017
Subedi, Bikram | Sullivan, Kenneth D. | Dhungana, Birendra
The quality of indoor environment has received considerable attention owing to the declining outdoor human activities and the associated public health issues. The prolonged exposure of children in childcare facilities or the occupational exposure of adults to indoor environmental triggers can be a culprit of the pathophysiology of several commonly observed idiopathic syndromes. In this study, concentrations of potentially toxic plasticizers (phthalates as well as non-phthalates) were investigated in 28 dust samples collected from three different indoor environments across the USA. The mean concentrations of non-phthalate plasticizers [acetyl tri-n-butyl citrate (ATBC), di-(2-ethylhexyl) adipate (DEHA), and di-isobutyl adipate (DIBA)] were found at 0.51–880 μg/g for the first time in indoor dust samples from childcare facilities, homes, and salons across the USA. The observed concentrations of these replacement non-phthalate plasticizer were as high as di-(2-ethylhexyl) phthalate, the most frequently detected phthalate plasticizer at highest concentration worldwide, in most of indoor dust samples. The estimated daily intakes of total phthalates (n = 7) by children and toddlers through indoor dust in childcare facilities were 1.6 times higher than the non-phthalate plasticizers (n = 3), whereas estimated daily intake of total non-phthalates for all age groups at homes were 1.9 times higher than the phthalate plasticizers. This study reveals, for the first time, a more elevated (∼3 folds) occupational intake of phthalate and non-phthalate plasticizers through the indoor dust at salons (214 and 285 ng/kg‐bw/day, respectively) than at homes in the USA.
Mostrar más [+] Menos [-]Early-life exposure to tobacco smoke alters airway signaling pathways and later mortality in D. melanogaster
2022
Sirocko, Karolina-Theresa | Angstmann, Hanna | Papenmeier, Stephanie | Wagner, Christina | Spohn, Michael | Indenbirken, Daniela | Ehrhardt, Birte | Kovacevic, Draginja | Hammer, Barbara | Svanes, Cecilie | Rabe, Klaus F. | Röder, Thomas | Uliczka, Karin | Krauss-Etschmann, Susanne
Early life environmental influences such as exposure to cigarette smoke (CS) can disturb molecular processes of lung development and thereby increase the risk for later development of chronic respiratory diseases. Among the latter, asthma and chronic obstructive pulmonary disease (COPD) are the most common. The airway epithelium plays a key role in their disease pathophysiology but how CS exposure in early life influences airway developmental pathways and epithelial stress responses or survival is poorly understood. Using Drosophila melanogaster larvae as a model for early life, we demonstrate that CS enters the entire larval airway system, where it activates cyp18a1 which is homologues to human CYP1A1 to metabolize CS-derived polycyclic aromatic hydrocarbons and further induces heat shock protein 70. RNASeq studies of isolated airways showed that CS dysregulates pathways involved in oxidative stress response, innate immune response, xenobiotic and glutathione metabolic processes as well as developmental processes (BMP, FGF signaling) in both sexes, while other pathways were exclusive to females or males. Glutathione S-transferase genes were further validated by qPCR showing upregulation of gstD4, gstD5 and gstD8 in respiratory tracts of females, while gstD8 was downregulated and gstD5 unchanged in males. ROS levels were increased in airways after CS. Exposure to CS further resulted in higher larval mortality, lower larval-pupal transition, and hatching rates in males only as compared to air-exposed controls. Taken together, early life CS induces airway epithelial stress responses and dysregulates pathways involved in the fly's branching morphogenesis as well as in mammalian lung development. CS further affected fitness and development in a highly sex-specific manner.
Mostrar más [+] Menos [-]Transcriptomic and metabolomic associations with exposures to air pollutants among young adults with childhood asthma history
2022
Liao, Jiawen | Gheissari, Roya | Thomas, Duncan C. | Gilliland, Frank D. | Lurmann, Fred | Islam, Khandaker Talat | Chen, Zhanghua
Ambient air pollutants are well-known risk factors for childhood asthma and asthma exacerbation. It is unknown whether different air pollutants individually or jointly affect pathophysiological mechanisms of asthma. In this study, we aim to integrate transcriptome and untargeted metabolome to identify dysregulated genetic and metabolic pathways that are associated with exposures to a mixture of ambient and traffic-related air pollutants among adults with asthma history. In this cross-sectional study, 102 young adults with childhood asthma history were enrolled from southern California in 2012. Whole blood transcriptome was measured with 20,869 expression signatures, and serum untargeted metabolomics including 937 metabolites were analyzed by Metabolon, Inc. Participants’ exposures to regional air pollutants (NO₂, O₃, PM₁₀, PM₂.₅) and near-roadway air pollutants averaged at one month and one year before study visit were estimated based on residential addresses. xMWAS network analysis and joint-pathway analysis were performed to identify subnetworks and genetic and metabolic pathways that were associated with exposure to air pollutants adjusted for socio-characteristic covariates. Network analysis found that exposures to air pollutants mixture were connected to 357 gene markers and 92 metabolites. One-year and one-month averaged PM₂.₅ and NO₂ were associated with several amino acids related to serine, glycine, and beta-alanine metabolism. Lower serum levels of carnosine and aspartate, which are involved in the beta-alanine metabolic pathway, as well as choline were also associated with worse asthma control (p < 0.05). One-year and one-month averaged PM₁₀ and one-month averaged O₃ were associated with higher gene expression levels of HSPA5, LGMN, CTSL and HLA-DPB1, which are involved in antigen processing and presentation. These results indicate that exposures to various air pollutants are associated with altered genetic and metabolic pathways that affect anti-oxidative capacity and immune response and can potentially contribute to asthma-related pathophysiology.
Mostrar más [+] Menos [-]The body's battle against pollution
1997
Olinescu, Radu | Smith, Terrance L. | Hertoghe, J.
Free radical biology in neurological manifestations: mechanisms to therapeutics interventions
2022
Tripathi, Rahul | Gupta, Rohan | Sahu, Mehar | Srivastava, Devesh | Das, Ankita | Ambasta, Rashmi K | Kumar, Pravir
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Mostrar más [+] Menos [-]