Refinar búsqueda
Resultados 1-10 de 30
Uptake and translocation of synthetic musk fragrances by pea plant grown in sewage sludge-amended soils
2022
Fernandes, Ana Sofia | Azevedo, Tomé | Rocha, Filipe | Nunes, Eugénia | Homem, Vera
Sewage sludges are rich in organic matter and several essential nutrients for plant growth, making them very appealing for application in agricultural soils. However, they may also contain a wide range of emerging pollutants, which has raised concerns about the potential risks of this practice to crops, the environment, and public health - accumulation in soils and/or plant uptake and translocation of contaminants. Therefore, there is a need to study plant-soil interactions and assess the uptake potential of these contaminants by food crops to better understand these risks. The main aim of this work was to assess the possible drawbacks of sludge application to cropland, by observing the impact on the growth and yield of a model crop (pea plant - Pisum sativum) grown over an 86-day greenhouse experiment and by assessing the uptake potential of synthetic musk fragrances. Different sewage sludge application rates (4–30-ton ha⁻¹) and initial concentrations of contaminants were tested. The application of sludge yielded benefits to the cultivated plants, finding improved crop productivity with an application rate of 30-ton ha⁻¹. At the end of the experiment, soil samples and plants separated into sections were analysed using a QuEChERS extraction methodology followed by gas chromatography-mass spectrometry (GC-MS) quantification. Galaxolide (HHCB) and tonalide (AHTN) underwent uptake by the plant roots, having been detected in concentrations up to 346 ng g⁻¹ on a dry weight basis (dw), but only HHCB was detected in above ground tissues. At the end, a decrease in the levels of synthetic musks in the amended soils (>80% in several instances) was observed. Assuming the worst-case scenario, no risk to human health was observed from the ingestion of peas grown on sewage sludge-amended soils. However, a soil hazard quotient analysis yielded worryingly high quotient values for AHTN in nearly all tested conditions.
Mostrar más [+] Menos [-]Evaluation of mercury bioavailability to vegetables in the vicinity of cinnabar mine
2021
Pelcová, Pavlína | Ridošková, Andrea | Hrachovinová, Jana | Grmela, Jan
Knowledge of the concentration of the bioavailable forms of mercury in the soil is necessary, especially, if these soils contain above-limit total mercury concentrations. The bioavailability of mercury in soil samples collected from the vicinity of abandoned cinnabar mines was evaluated using diffusive gradients in the thin films technique (DGT) and mercury phytoaccumulation by vegetables (lettuce, spinach, radish, beetroot, carrot, and green peas). Mercury was accumulated primarily in roots of vegetables. The phytoaccumulation of mercury into edible plant parts was site-specific as well as vegetable species-specific. The mercury concentration in edible parts decreased in the order: spinach leaf ≥ lettuce leaf ≥ carrot storage root ≥ beetroot storage root > radish storage root > pea legume. The translocation index as well as the target hazard quotient indicate the possible usability of soils from the vicinity of abandoned cinnabar mines for planting pod vegetables (peas). A strong positive correlation (r = 0.75 to 0.92, n > 30, p < 0.05) was observed between mercury concentration in secondary roots, the storage roots, leaves of vegetables and the flux of mercury from soil to the DGT units, and the effective concentration of mercury in soil solutions.
Mostrar más [+] Menos [-]Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay
2019
Shaheen, Sabry M. | Wang, Jianxu | Swertz, Ann-Christin | Feng, Xinbin | Bolan, Nanthi | Rinklebe, Jörg
Enhancing metals phytoextraction using gentile mobilizing agents might be an appropriate approach to increase the phytoextraction efficiency and to shorten the phytoremediation duration. The effect of sulfur-impregnated organoclay (SIOC) on the redistribution of potentially toxic elements (PTEs) among their geochemical fractions in soils and their plant uptake has not yet been studied. Therefore, our aim is to investigate the role of different SIOC application doses (1%, 3% and 5%) on operationally defined geochemical fractions (soluble + exchangeable; bound to carbonate; manganese oxide; organic matter; sulfide; poorly- and well-crystalline Fe oxide; and residual fraction) of Cd, Cr, Cu, Ni, Pb, and Zn, and their accumulation by pea (Pisum sativum) and corn (Zea mays) in a greenhouse pot experiment using a polluted floodplain soil. The SIOC caused a significant decrease in soil pH, and an increase in organic carbon and total sulfur content in the soil. The addition of SIOC increased significantly the soluble + exchangeable fraction and bioavailability of the metals. The SIOC leads to a transformation of the residual, organic, and Fe-Mn oxide fractions of Cd, Cu, Ni, and Zn to the soluble + exchangeable fraction. The SIOC addition increased the potential mobile (non-residual) fraction of Cr and Pb. The SIOC increased the sulfide fraction of Cr, Ni, and Zn, while it decreased the same fraction for Cd, Cu, and Pb. The effect of SIOC on the redistribution of metal fractions increased with enhancing application dosages. Pea accumulated more metals than corn with greater accumulation in the roots than shoots. Application of the higher dose of SIOC promoted the metals accumulation by roots and their translocation to shoots of pea and corn. Our results suggest the potential suitability of SIOC for enhancing the phytomanagement of PTEs polluted soils and reducing the environmental risk of these pollutants.
Mostrar más [+] Menos [-]The effect of calcium and pH on nickel accumulation in and rhizotoxicity to pea (Pisum sativum L.) root-empirical relationships and modeling
2010
Wu, Yonghong | Hendershot, William H.
The accumulation and rhizotoxicity of Ni to pea were investigated. Calcium, H, and Ni competed for root-binding sites with high pH and low Ca favoring more Ni accumulation. At low pH, Ca accumulation is the key factor determining root growth, while at medium to high pH, root elongation is more sensitive to Ni concentration. The tissue concentration of Ni and Ca ([Ni]t or [Ca]t, μmol g-1 dry root) can be predicted from total dissolved Ni ([Ni]T, μM), pH, and total dissolved Ca ([Ca]T, mM) by two approaches. Approach 1 is the empirical equations [Ni]t = (0.361 pH-0.695[Ca]T)*[Ni]T and [Ca]t = 8.29 pH + 10.8 [Ca]T. The second approach involves a two-step model. The surface-bound Ni and Ca are estimated from a surface adsorption model with binding constants derived from independent ion adsorption experiments. Then transfer functions are used to predict internal root Ni and Ca accumulation.
Mostrar más [+] Menos [-]Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds
1996
Chugh, L.K. | Sawhney, S.K. (Department of Chemistry and Biochemistry, CCS Haryana Agricultural University, Hisar 125004 (India))
Comparison of lead tolerance in Allium cepa with other plant species
1999
Wierzbicka, M. (Environmental Plant Pollution Laboratory, University of Warsaw, Krakowskie Przedmiescie 26/28, 00-927 Warsaw (Poland))
Potential and safe utilization of Fly ash as fertilizer for Pisum sativum L. Grown in phytoremediated and non-phytoremediated amendments
2021
Bhattacharya, Tanushree | Pandey, Shikha Kumari | Pandey, Vimal Chandra | Kumar, Abhishek
The present study focuses on the possibility of applying fly ash to agricultural fields for enhancing the production of agricultural crops. In this study, Pisum sativum L. was grown from germination stage to maturation stage in phytoremediated and non-phytoremediated or raw fly ash-amended soil. All the morphological (height, biomass, number of leaf, and leaf size) and physiological parameters like, protein content, chlorophyll content, nitrate reductase activity, and peroxidase activity were monitored to understand the effects of fly ash or its usefulness for using it as a fertilizer for facilitating micronutrients. Major finding of this study is that 40% (w/w) of non-phytoremediated fly ash amendment could be used for field application. Percentage increase of toxic metals in below ground organs was 6% for Cd, 6% for Cr, 5% for Cu, 15% for Mn, and 7% for Pb when compared with the control. In the non-phytoremediated fly ash-amended set, heavy metals and metalloids were present in the grains only at higher amendments T3 (60%) and T4 (80%). However, except Cd, all the metals were below the permissible limits suggested by the WHO. Phytoremediated fly ash could be used as a fertilizer up to 100% for the cultivation of pea plant as metals concentrations were found either below detection limit or below the WHO permissible limit.
Mostrar más [+] Menos [-]Influence of Heavy Metals on Seed Germination and Seedling Growth of Wheat, Pea, and Tomato
2019
Baruah, Nijara | Mondal, Subham C. | Fārūq, Muḥammad | Gogoi, Nirmali
Experiments were conducted under lead (Pb), cadmium (Cd), and copper (Cu) exposure to observe germination and seedling growth of wheat (Triticum aestivum L), pea (Pisum sativum), and tomato (Solanum lycopersicum L.). Metals were applied in five concentrations (20, 65, 110, 175, and 220 ppm) and Hoagland solution was used to feed the seedlings. Irrespective of the tested crop seeds, copper revealed maximum effect (51.2%) on germination followed by lead (47.5%) and cadmium (35.3%). Tomato seeds were most sensitive in germination stage followed by pea and wheat. In seedling stage, tomato also showed highest sensitivity to both Cd and Cu. However, pea seedlings showed higher tolerance to Pb and wheat seedlings had the highest tolerance to both Cu and Cd. Toxicity and tolerance of metals was found to vary with crops and growth stages. Higher transfer of metals (Pb, Cd, and Cu) in wheat seedling indicates higher risk of food chain contamination when grown in polluted soil. Higher mobility and uptake of Cd in tomato and wheat seedlings even under lower concentration of exposure needs further study.
Mostrar más [+] Menos [-]Cation Exchange Capacity and Proton Binding Properties of Pea (Pisum sativum L.) Roots
2009
Wu, Yonghong | Hendershot, William H.
Risk assessment of trace-metal contamination in soils requires predictive models that take into account the interaction of metal ions with other cations (e.g., H⁺ and Ca²⁺) that can change the speciation of trace metals in solution and compete for binding sites on plant roots thus affecting metal uptake and toxicity. Acid-base titrations were used to estimate the types and quantity of cation-binding sites on fresh pea (Pisum sativum L. cv. Lincoln) roots and their binding strength with protons. The roots were found to have three types of cation-binding sites with site densities of 190, 382, and 347 μmolc g⁻¹ (dry weight), respectively. The binding strength with H⁺ was indicated by the equilibrium formation constants (K HLj ). The logK HLj values under different ionic strengths were determined. At zero ionic strength, the logK HLj values are estimated to be 2.5, 5.5, and 8.3, respectively. Complementary experiments were used to validate the titration results. These included an ion exchange experiment, an experiment with HCl extractions, and a KOH neutralization method. Estimates from all four methods were consistent under the experimental conditions. The quantification of the binding capacity and the characteristics of these binding sites will assist in the development of more appropriate solution speciation models that incorporate biotic ligands. The derived parameters will provide the basis on which further development of a biotic ligand model is dependent.
Mostrar más [+] Menos [-]Lessening the toxic effect of the methylisothiazolinone via vermicompost tea on Pisum sativum
2022
Aydin, Duygu | Yüksel, Burcu
Biocides, which are found in nature as persistent pollutants, pose a great danger to the ecosystem. Methylisothiazolinone (MIT), a widely used biocide, reaches plants by mixing with water and soil. Vermicompost tea (VCT), which strengthens the plant defence mechanism and increases its growth and development, is a liquid fertiliser consisting of the cooperation of worms with microbes. In the present study, after applying 0.4 g/L (EC50/2), 0.8 g/L (EC50), and 1.6 g/L (EC50 × 2) MIT concentrations without and with VCT on forage pea (Pisum sativum), root lengths, mitotic index data, chromosome and nuclei abnormalities, and DNA damage level were determined. When VCT applied and non-applied groups were compared, it was found that, especially in the VCT applied group, they cope with the stress conditions created by MIT. In addition, positive effects were observed in root lengths, mitotic index data, and amount of cell nuclei abnormalities. In line with other study results, VCT reduces cellular damage by regulating the normal life cycle disrupted in the cell due to mutagens using the curative-regulatory feature.
Mostrar más [+] Menos [-]