Refinar búsqueda
Resultados 1-10 de 63
Summer aspect of zooplankton and microzooperiphyton of some water course in the Republic of Srpska [Bosnia and Herzegovina]]
2001
Bobic, M. (Institut za vode Republike Srpske, Bijeljina - Republika Srpska (Bosnia and Herzegovina))
In the scope of the Program of surface water quality examinations in the Republic of Srpska (Bosnia and Herzegovina), hydrometric measurements and water quality examinations had been realized, where zooplankton and microzooperiphyton researches have been performed. Sampling were performed in the period from 6th to 20th May 2000, at 13 water courses with taken in total 21 samples. In qualitative structure of examined fauna, Rotatoria, Cladocera and Copepoda groups were treated, with ascertained in total 109 taxa from 41 genus. In qualitative structure periphyton taxa are predominant. On the basis of bioindicatory species structure it is noticed that dominant species are oligasaprobic and oligobetamesosaprobic character.
Mostrar más [+] Menos [-]Proportional presence of phytoplankton group in touristic part of Palic lake [Serbia, Yugoslavia]
2001
Dulic, S. | Mrkic, B. (Zavod za zastitu zdravlja, Subotica (Yugoslavia))
The analysis of the phytoplakton and phytoperiphyton communities in the Palic lake (Serbia, Yugoslavia), has been performed with aim the water quality evalution. The determining and following proportional presence of phytoplankton were in the fourth sector of lake during 1998, 1999, and 2000. During the period of investigation, the phytoplankton community was characterized by forms of Chlorophyta, Cyanophyta, Euglenophyta and Bacillariophyta. During the investigation it was perceived the change in proportional participation in the presence of the four alga group mentioned above. The most representative percent was the Chlorophyta group, with values from 44.4%, to 54.7%. The other phytoplakton group has less values of percentage in the values.
Mostrar más [+] Menos [-]Algological and saprobiological analysis of the river Dulenska [Serbia, Yugoslavia]
1997
Rankovic, B. | Simic, S. (Prirodno-matematicki fakultet, Kragujevac (Yugoslavia). Institut za biologiju)
During hydrobiological investigations of the river Dulenska (Serbia, Yugoslavia) in June 1996, algological samples were taken at this river. In the algae community are found 34 taxa from two divisio: Bacillariophyta (28) and Chlorophyta (6). While qualitative composition of the algae colony was relativelly uniformed quantitative one was changeable along the course of the Dulenska river. By saprobiological analysis, it was found that the quality of water was changing along the course of the river. At the upper and middle course of river the water belonging to the second class. At lower course of the river (below Rekovac) water quality was getfing worse and it belonging to the third class.
Mostrar más [+] Menos [-][Biocenoses of the river Vlasina and its tributaries [Serbia, Yugoslavia] with special reference to the bottom fauna as indicator of water quality in the spring aspect of 1996]
1997
Paunovic, M. (Institut za bioloska istrazivanja "Sinisa Stankovic", Beograd (Yugoslavia)) | Tanaskovic, M. | Kalafatic, V. | Jakovcev, D. | Martinovic-Vitanovic, V.
During one-year examination of the Vlasina river and its main tributaries, the Luznica and Gradska rivers, Serbia (Yugoslavia), in May 1996, the samples were taken for biological and chemical analysis of the watercourse in the spring aspect. Sampling was performed on the five localities of the Vlasina river, and two tribute localities near the mouth thus including all critical points where the changes of physico-chemical water parameters and qualitative/quantitative biocenoses compositions due to the increasing anthropogenic influence could occur. Data on phytoplankton, zooplankton, periphyton and benthos were analysed together with the physico-chemical water parameters in order to determine communities composition and structure and bioindicator species. Based on these results the status of aquatic environment i.e. water quality, was evaluated.
Mostrar más [+] Menos [-]Community-level and function response of photoautotrophic periphyton exposed to oxytetracycline hydrochloride Texto completo
2022
Wang, Zhenfang | Yin, Sicheng | Chou, Qingchuan | Zhou, Dong | Jeppesen, Erik | Wang, Liqing | Zhang, Wei
Periphyton is considered important for removal of organic pollutants from water bodies, but knowledge of the impacts of antibiotics on the community structure and ecological function of waterbodies remains limited. In this study, the effects of oxytetracycline hydrochloride (OTC) on the communities of photoautotrophic epilithon and epipelon and its effect on nitrogen and phosphorus concentrations in the water column were studied in a 12-day mesocosm experiment. The dynamics of nitrogen and phosphorus concentrations in the epipelon and epilithon experiment showed similar patterns. The concentrations of total nitrogen, dissolved total nitrogen, ammonium nitrogen, total phosphorus and dissolved total phosphorus in the water column increased rapidly during the initial days of exposure, after which a downward trend occurred. In the epilithon experiment, we found that the photosynthesis (Fv/Fm) and biomass of epilithon were significantly (P < 0.05) stimulated in the low concentration group. Contrarily, growth and photosynthesis (Fv/Fm) were significantly (P < 0.05) reduced in the medium and high concentration group. We further found that the photosynthetic efficiency of photoautotrophic epilithon was negatively correlated with the concentrations of nitrogen and phosphorus in the water column (P < 0.05). Principal coordinate analysis (PCoA) showed that the communities of epilithic algae in the control group and in the low concentration group were significantly (P < 0.05) different from that of the high concentration group during the initial 4 days. After 8 days’ exposure, all groups tended to be similar, indicating that epilithon showed rapid adaptability and/or resilience. Similar results were found for the relative abundance of some epilithic algae. Our findings indicate that the biofilm system has strong tolerance and adaptability to OTC as it recovered fast after an initial suppression, thus showing the important role of periphyton in maintaining the dynamic balance of nutrients with other processes in aquatic ecosystems.
Mostrar más [+] Menos [-]Responses of benthic macroinvertebrate communities to a Bti-based insecticide in artificial microcosm streams Texto completo
2021
Bordalo, Maria D. | Machado, Ana L. | Campos, Diana | Coelho, Sónia D. | Rodrigues, Andreia C.M. | Lopes, Isabel | Pestana, João L.T.
Bioinsecticides based on the bacterium Bacillus thuringiensis subsp. israelensis (Bti) are increasingly being applied directly into aquatic compartments to control nuisance mosquitoes and blackflies and are generally considered environmentally friendly alternatives to synthetic insecticides. Bti-based insecticides are considered highly selective, being Diptera-specific, and supposedly decompose rapidly in the environment. Nevertheless, their safety to non-target species and freshwater ecosystems has been questioned by recent studies, which in fact document possible indirect effects in aquatic food webs such as the decrease of prey availability to predators. This work aimed to evaluate the potential effects of a Bti-based insecticide (VectoBac® 12AS) on a freshwater macroinvertebrate community and on stream ecological functions by using artificial microcosm streams. Artificial microcosm streams were colonized with a macroinvertebrate community plus periphyton collected in a stream together with Alnus glutinosa leaf packs. They were exposed for 7 days to different Bti treatments (0, 12, 120, 1200 μg/L), which are within the recommended concentrations of application in aquatic compartments for blackfly and mosquito control. Besides invertebrate community structure and abundance, effects were evaluated regarding leaf decomposition and primary production as measures of ecosystem functioning. Community structure was significantly altered in all Bti treatments after 7 days of exposure, mostly due to a decline in chironomids, followed by oligochaetes, which both belong to the deposit-feeders’ functional group. Direct effects on oligochaetes are surprising and require further research. Also, reductions of leaf decomposition due to Bti-induced sublethal effects on shredders (reduced feeding) or mortality of chironomids (that can also feed on coarse organic matter) observed in our study, represent potential indirect effects of Bti in aquatic ecosystems. Our short-exposure experiment evidenced some negative effects on stream benthic invertebrate communities and on ecosystem functioning that must be considered whenever Bti is used in water bodies for blackfly or mosquito control programs.
Mostrar más [+] Menos [-]First evaluation of the periphyton recovery after glyphosate exposure Texto completo
2021
Vera, María Solange | Trinelli, María Alcira
The potential environmental risk of glyphosate has promoted the need for decontamination of glyphosate-polluted water bodies. These treatments should be accompanied by studies of the recovery potential of aquatic communities and ecosystems. We evaluated the potential of freshwater periphyton to recover from glyphosate exposure using microcosms under laboratory conditions. Periphyton developed on artificial substrates was exposed to 0.4 or 4 mg l⁻¹ monoisopropylamine salt of glyphosate (IPA) for 7 days, followed by translocation to herbicide-free water. We sampled the community 1, 2 and 3 weeks after the transfer. Dry weight, ash-free dry weight, chlorophyll a, and periphyton abundances were analysed. The periphyton impacted with the lowest IPA concentration recovered most of the structural parameters within 7 days in clean water, but the taxonomic structure did not entirely recover towards the control structure. Periphyton exposed to 4 mg IPA l⁻¹ could not recover during 21 days in herbicide-free water, reaching values almost four times higher in % of dead diatoms and four times lower in ash-free dry weight concerning the control at the end of the study. Results suggest a long-lasting effect of the herbicide due to the persistence within the community matrix even after translocating periphyton to decontaminated water. We conclude that the exposure concentration modulates the recovery potential of IPA-impacted periphyton. The current research is the first to study the recovery in glyphosate-free water of periphyton exposed to the most commonly used herbicide in the world. Finally, we highlight the need for more studies focused on the recovery potential of freshwater ecosystems and aquatic communities after glyphosate contamination.
Mostrar más [+] Menos [-]Aquatic vascular plants – A forgotten piece of nature in microplastic research Texto completo
2020
Kalčíková, Gabriela
Research on the interaction of microplastics and aquatic organisms has been mainly focused on the evaluation of various impacts on animals while aquatic vascular plants have been so far understudied. In this commentary, we summarized knowledge about interactions of microplastics with aquatic vascular plants and highlighted potential ecological implications. Based on recent research, microplastics have minimal impacts on plants. However, they are strongly attracted to plant tissues, adsorbed, and accumulated by plants. Several mechanisms drive microplastics adsorption and accumulation; the most possibly electrostatic forces, leaf morphology, and presence of periphyton belong among the most important ones. Adsorbed microplastics on plant tissues are easily ingested by herbivores. Plants can thus represent a viable pathway for microplastics to enter aquatic food webs. On the other hand, the strong interactions of microplastics with plants could be used for their phytostabilization and final removal from the environment. Aquatic vascular plants have thus an important role in the behavior and fate of microplastics in aquatic ecosystems, and therefore, they should also be included in the future microplastic research.
Mostrar más [+] Menos [-]A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Texto completo
2018
Grubisic, Maja | van Grunsven, Roy H.A. | Manfrin, Alessandro | Monaghan, Michael T. | Hölker, Franz
The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.
Mostrar más [+] Menos [-]Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms Texto completo
2018
Wilkinson, John L. | Hooda, Peter S. | Swinden, Julian | Barker, James | Barton, Stephen
Organic contaminants such as pharmaceuticals, personal care products (PPCPs) and other emerging contaminants (ECs) are known to persist in the aquatic environment and many are indicated as endocrine, epigenetic, or other toxicants. Typically, the study of PPCPs/ECs in the aquatic environment is limited to their occurrence dissolved in river water. In this study, accumulation and spatial distribution of thirteen PPCPs/ECs were assessed in aquatic sediment (n = 23), periphyton (biofilm, n = 8), plants Callitriche sp. (n = 8) and Potamogeton sp. (n = 7) as well as amphipod crustaceans (Gammarus pulex, n = 10) and aquatic snails (Bithynia tentaculata, n = 9). All samples (n = 65) were collected from the Hogsmill, Blackwater and Bourne Rivers in southern England. Targeted PPCPs/ECs included pharmaceuticals, plasticisers, perfluorinated compounds, illicit drugs and metabolites. Extraction from solid matrices occurred using ultrasonic-assisted extraction followed by an in-house validated method for solid-phase extraction and subsequent liquid-chromatography tandem mass-spectrometry. Field-derived bioconcentration-factors and biota-sediment accumulation-factors were determined for all studied biota. Residues of studied contaminants were found in all sediment and biota. Concentrations of contaminants were generally higher in biota than sediment. Evidence suggests that the studied aquatic plants may effectively degrade bisphenol-A into its main transformation product hydroxyacetophenone, potentially mediated by cytochrome p450 and internalisation of contaminants into the cellular vacuole. A positive association between both hydrophobicity and PFC chain length and contaminant accumulation was observed in this work. Only PFCs, plasticisers and HAP were classified as either ‘bioaccumulative’ or ‘very bioaccumulative’ using BCF criteria established by guidelines of four governments. Contaminants appeared to be differentially bioaccumulative in biota, indicating there may be a need for a species-specific BCF/BSAF classification system. These data form a detailed accounting of PPCP/EC fate and distribution in the aquatic environment highlighting accumulation at lower trophic levels, a potential source for higher organisms.
Mostrar más [+] Menos [-]