Refinar búsqueda
Resultados 1-10 de 804
Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil
2022
Tanveer, Yashfa | Yasmin, Humaira | Nosheen, Asia | Ali, Sajad | Ahmad, Ajaz
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants’ defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
Mostrar más [+] Menos [-]Terrigenous export and ocean currents' diffusion of organophosphorus flame retardants along China's adjacent seas
2022
Zheng, Hongyuan | Cai, Minghong | Yang, Chao | Gao, Yuan | Chen, Zhiyi | Liu, Yanguang
High demands for but strict regulatory measures on Organophosphorus Flame Retardants (OPFRs) have resulted in mainland China transitioning from the region that imports OPRFs to one that exports these substances. Simultaneously, large quantities of terrigenous OPFRs have been exported to adjacent seas by the major river systems, particularly the Yangtze River. This study examined the presence of ten OPFRs in China's adjacent seas. High levels of OPFRs were observed in seas south of mainland China, with Tris (2-chloroethyl) phosphate (TCEP) and Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) dominant. The terrigenous OPFRs were redistributed by the ocean surface currents, with OPFRs tending to accumulate in regions with lower current speed. The producers of OPFRs are mainly distributed along the Haihe, Yellow, and Yangtze river systems. The application of OPFRs to electric vehicle charging stations, charging connectors, and 5G infrastructure in the Chinese mainland will likely drive rapid growth in OPFR related industry in the future. The diffusion trend map of OPFR indicated that the Bohai Sea and the central northern Yellow Sea are at high risk of ecological damage in the spring. The offshore region of the north of the South China Sea tended to aggregate more OPFRs in summer. Regions of the OPFR aggregation effect were at a higher risk of ecological damage.
Mostrar más [+] Menos [-]Seasonal variation and deposition of atmospheric organophosphate esters in the coastal region of Shanghai, China
2022
Ma, Yuxin | Luo, Yuchen | Zhu, Jincai | Zhang, Jinghua | Gao, Guoping | Mi, Wenying | Xie, Zhiyong | Lohmann, Rainer
The coastal megacity Shanghai is located in the center of the Yangtze River Delta, a dominant flame retardants (FRs) production region in China, especially for organophosphate esters (OPEs). This prompted us to investigate occurrence and seasonal changes of atmospheric OPEs in Shanghai, as well as to evaluate their sources, environmental behavior and fate as a case study for global coastal regions. Atmospheric gas and particle phase OPEs were weekly collected at two coastal sites - the emerging town Lingang New Area (LGNA), and the chemical-industry zone Jinshan Area (JSA) from July 2016–June 2017. Total atmospheric concentrations of the observed OPEs were significantly higher in JSA (median of 1800 pg m⁻³) than LGNA (median of 580 pg m⁻³). Tris(1-chloro-2-propyl) phosphate (TCPP) was the most abundant compound, and the proportion of three chlorinated OPEs were higher in the particle phase (55%) than in the gas phase (39%). The year-round median contribution of particle phase OPEs was 33%, which changed strongly with seasons, accounting for 10% in summer in contrast to 62% in winter. Gas and particle phase OPEs in JSA exhibited significant correlations with inverse of temperature, respectively, indicating the importance of local/secondary volatilization sources. The estimated fluxes of gaseous absorption were almost 2 orders of magnitude higher than those of particle phase deposition, which could act as sources of organic phosphorus to coastal and open ocean waters.
Mostrar más [+] Menos [-]Tissue distribution and bioaccumulation of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in edible fishes from Taihu Lake, China
2021
Chen, Meng | Zhu, Lingyan | Wang, Qiang | Shan, Guoqiang
Tissue distribution of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in several kinds of edible fishes collected from Meiliang bay of Taihu Lake, China were investigated and the related human health risks were assessed. Perfluorooctanesulfonate (PFOS), perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer phosphate diester (6:2 diPAP) were the most abundant legacy perfluoroalkyl acid (PFAA), PFOS related precursor (PreFOS), and the emerging PFASs in all fish tissues, respectively. Similar to the legacy PFAAs, 6:2 diPAP and 6:6 perfluorophosphinate (6:6 PFPiA) had the highest levels in the fish liver, whereas the highest level of PFOSA was in kidney, which might be due to its intensive transformation in fish liver. The concentrations of PFASs were generally positively correlated with the trophic levels. The profiles of PFASs were significantly different among bitterling, crucian and other fish, which might be related to their different metabolic capacities. Bioaccumulation factors (BAFs) of PreFOSs, 6:2 diPAP, and 6:6 PFPiA were lower than those of PFAAs with the same number of perfluorinated carbons. The calculated hazard ratios (HR) of PFOS (Range: 0.0100–0.655) and perfluorooctanoic acid (PFOA) (<0.00200) in all fish muscles were less than 1.0. However, the HR of the ∑PFASs in crucian muscle was 1.04, which implied that frequent consumption of crucian collected from Meiliang Bay might pose potential risks to human health.
Mostrar más [+] Menos [-]Spatial patterning of chlorophyll a and water-quality measurements for determining environmental thresholds for local eutrophication in the Nakdong River basin
2021
Kim, Hyo Gyeom | Hong, Sungwon | Chon, Tae Soo | Joo, Gea-Jae
Management of water-quality in a river ecosystem needs to be focused on susceptible regions to eutrophication based on proper measurements. The stress–response relationships between nutrients and primary productivity of phytoplankton allow the derivation of ecologically acceptable thresholds of stressors under field conditions. However, spatio-temporal variations in heterogeneous environmental conditions have hindered the development of locally applicable criteria. To address these issues, we utilized a combination of a geographically specialized artificial neural network (Geo-SOM, geo-self-organizing map) and linear mixed-effect models (LMMs). The model was applied to a 24-month dataset of 54 stations that spanned a wide spatial gradient in the Nakdong River basin. The Geo-SOM classified 1286 observations in the basin into 13 clusters that were regionally and seasonally distinct. Inclusion of the random effects of Geo-SOM clustering improved the performance of each LMM, which suggests that there were significant spatio-temporal variations in the Chla–stressor relationships. These variations arise owing to differences in background seasonality and the effects of local pollutant variables and land-use patterns. Among the 16 environmental variables, the major stressors for Chla were total phosphate (TP) as a nutrient and biological oxygen demand (BOD) as a non-nutrient according to the results of both Geo-SOM and LMM analyses. Based on LMMs with the random effect of the Geo-SOM clusters on the intercept and the slope, we can propose recommended thresholds for TP (18.5 μg L⁻¹) and BOD (1.6 mg L⁻¹) in the Nakdong River. The combined method of LMM and Geo-SOM will be useful in guiding appropriate local water-quality-management strategies and in the global development of large-scale nutrient criteria.
Mostrar más [+] Menos [-]Spatial occurrence and composition profile of organophosphate esters (OPEs) in farmland soils from different regions of China: Implications for human exposure
2021
The environmental load of organophosphate ester (OPE) flame retardants has caused a series of problems due to their extensive use. The soil matrix, as an ultimate sink for organic pollution, plays a vital part in the fate of OPEs in the environment. In this study, the spatial occurrence, composition profile and health risk of 13 OPE species in farmland soils from four provinces of China were characterized. Excluding tris(2,3-dibromopropyl) phosphate (TDBPP) and ethylhexyl diphenyl phosphate (EHDPP), the remaining eleven OPEs had a high detection frequency (DF) ranging from 60% to 100%. The range of total OPE (ΣOPE) concentrations were 62.3–394 ng/g dry weight (dw), with a median of 228 ng/g dw. Among these OPEs, tris(2-ethylhexyl) phosphate (TEHP) with a median of 143 ng/g dw) was the predominant species, followed by tricresyl phosphate (TCP; median of 20.1 ng/g dw) and tris(2-chloroethyl) phosphate (TCEP; median of 17.9 ng/g dw). In terms of geographical distribution, significantly lower OPEs levels were found in samples from Heilongjiang (159 ± 47.0 ng/g dw) than in those of Guangxi (264 ± 66.0 ng/g dw), Henan (252 ± 74.5 ng/g dw) and Hubei (242 ± 52.8 ng/g dw) provinces. Principal component analysis and Spearman’s correlations were used to reveal potential sources of OPEs in the different provincial regions. Health risk exposure to OPEs in farmland soils was at an acceptable level (<1.20 × 10⁻⁵ for non-carcinogenic risk to children as the most sensitive age group; and <6.47 × 10⁻¹⁰ for carcinogenic risk to adults as the most sensitive age group) at the present detected concentrations. However, TCEP and TEHP, the predominant risk contributors, should be paid more attention.
Mostrar más [+] Menos [-]Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP)
2021
Zhang, Xin | Tang, Xuexi | Yang, Yingying | Sun, Zijie | Ma, Wenqian | Tong, Xin | Wang, Chengmin | Zhang, Xinxin
The typical alkyl organophosphorus flame retardant tributyl phosphate (TnBP) can leak from common products into the marine environment, with potential negative effects on marine organisms. However, risk assessments for TnBP regarding zooplankton are lacking. In this study, a marine rotifer, Brachionus plicatilis, was used to analyze the effect of TnBP (0.1 μg/L, environmental concentration; 1 and 6 mg/L) on reproduction, population growth, oxidative stress, mitochondrial function and metabolomics. Mortality increased as the TnBP concentration rose; the 24-h LC₅₀ value was 12.45 mg/L. All tested TnBP concentrations inhibited B. plicatilis population growth, with reproductive toxicity at the higher levels. Microstructural imaging showed ovary injury, the direct cause of reproductive toxicity. Despite elevated glutathione reductase activities, levels of reactive oxygen species and malonyldialdehyde increased under TnBP stress, indicating oxidative imbalance. TnBP induced mitochondrial malformation and activity suppression; the ROS scavenger N-acetylcysteine alleviated this inhibition, suggesting an internal connection. Nontargeted metabolomics revealed 398 and 583 differentially expressed metabolites in the 0.1 μg/L and 6 mg/L treatments relative to control, respectively, which were enriched in the pathways such as biosynthesis of amino acids, purine metabolism, aminoacyl-tRNA biosynthesis. According to metabolic pathway analysis, oxidative stress from purine degradation, mitochondrial dysfunction, disturbed lipid metabolism and elevated protein synthesis were jointly responsible for reproduction and population growth changes. This study echoes the results previously found in rotifer on trade-off among different life processes in response to environmental stress. Our systematic study uncovers the TnBP toxic mode of action.
Mostrar más [+] Menos [-]Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland
2021
Irshad, Sana | Xie, Zuoming | Kāmrān, Muḥammad | Nawaz, Asad | Faheem, | Mehmood, Sajid | Gulzar, Huma | Saleem, Muhammad Hamzah | Rizwan, Muhammad | Malik, Zaffar | Parveen, Aasma | Ali, Shafaqat
Arsenic contamination of ground water is a worldwide issue, causing a number of ailments in humans. As an engineered and integrated solution, a hybrid vertical subsurface flow constructed wetland (VSSF-CW) amended with BCXZM composite (Bacillus XZM immobilized on rice husk biochar), was found effective for the bioremediation of arsenic contaminated water. Biological filter was prepared by amending top 3 cm of VSSF-CW bed with BCXZM. This filter scavenged ∼64% of total arsenic and removal efficiency of ∼95% was achieved by amended and planted (As + P + B) VSSF-CW, while non-amended (As + P) VSSF-CW showed a removal efficiency of ∼55%. The unplanted and amended (As + B) VSSF-CW showed a removal efficiency of ∼70%. The symbiotic association of Bacillus XZM, confirmed by SEM micrographs, significantly (p ≤ 0.05) reduced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation in Typha latifolia, hence, increasing the plant growth (2 folds). An increase in the indole acetic acid (IAA) and arsenic accumulation in plant was also observed in As + P + B system. The removal efficiency of the system was compromised after 4th consecutive cycle and 48 h was observed as optimum retention time. The FTIR-spectra showed the involvement of -N-H bond, carboxylic acids, –CH₂ stretching of –CH₂ and –CH₃, carbonyl groups, -C-H, C–O–P and C–O–C, sulphur/thiol and phosphate functional groups in the bio-sorption of arsenic by BCXZM filter. Our study is a first reported on the simultaneous phytoextraction and biosorption of arsenic in a hybrid VSSF-CW. It is proposed that BCXZM can be applied effectively in CWs for the bioremediation of arsenic contaminated water on large scale.
Mostrar más [+] Menos [-]Organic pollutants in marine samples from Tunisian coast: Occurrence and associated human health risks
2021
Jebara, Amel | Lo Turco, Vincenzo | Potortì, Angela Giorgia | Bartolomeo, Giovanni | Ben Mansour, Hedi | Di Bella, Giuseppa
140 contaminants belonging to various classes (organochlorine and organophosphorus pesticides, pyrethroid insecticides, carbamates, fungicides, acaricides, herbicides, synergists, insect growth regulators, polychlorobiphenyls, polycyclic aromatic hydrocarbons) were simultaneously analysed by GC-MS/MS in marine sediments, aquatic plant leaves and fish tissues samples. A total of 260 samples from five stations along the coast of Tunisia were evaluated. The results highlight that only 28 residues (12 polychlorobiphenyls, 8 organochlorine pesticides, 7 polycyclic aromatic hydrocarbons and triphenyl phosphate) were detected at levels higher than relative LOQ values. The amounts in sediment samples were compared with Sediment Quality Guidelines (SQGs) showing that the values are acceptable and no toxic effect is expected on aquatic organisms. A little variation of contaminant residues in sediment samples among coastal stations was recorded. Namely, with respect to almost all polychlorobiphenyls and organochlorine pesticides, higher values were recorder in summer. With respect to almost all polycyclic aromatic hydrocarbons, higher values were recorder in autumn. Aquatic plant leaves showed a residue accumulation higher than that of other compartments of marine system. The data about fish samples (Sparus aurata and Sarpa salpa, the two most frequently caught fish species at five sites on the central coast of Tunisia) do not pose direct hazard to human health because values were lower than protection limits.
Mostrar más [+] Menos [-]Triphenyl phosphate delayed pubertal timing and induced decline of ovarian reserve in mice as an estrogen receptor antagonist
2021
Ma, Haojia | Ishida, Keishi | Xu, Chenke | Takahashi, Kyosuke | Li, Yu | Zhang, Chenhao | Kang, Qiyue | Jia, Yingting | Hu, Wenxin | Matsumaru, Daisuke | Nakanishi, Tsuyoshi | Hu, Jianying
Although concerns have been raised about the adverse effects of triphenyl phosphate (TPhP) on female fertility, its risk to ovarian functioning remains unknown. In this study, female C57BL/6 mice at postnatal day 21 were exposed on a daily basis to TPhP dose of 2, 10, and 50 mg/kg for 40 days. A significant delay in pubertal timing was observed in the mice exposed to 50 mg/kg of TPhP. An estrogen-responsive reporter transgenic mice assay demonstrated that TPhP significantly downregulated the estrogen receptor (ER) signaling by 45.1% in the whole body in the 50 mg/kg group, and by 14.7–43.7% in the uterus for all exposure groups compared with the control. This strong antagonistic activity of TPhP toward ER explained the delay in pubertal timing. A significant reduction in the number of follicles in all stages was observed in mice after being exposed to TPhP for 40 days at concentrations of 10 and 50 mg/kg, resulting in a decline of the ovarian reserve. The elevation of the follicle-stimulating hormone concentration may have contributed to this phenomenon, as controlled by the antagonistic activity of TPhP toward ER in the brain. The toxic effects of TPhP on ovarian functioning highlight this chemical as a potential risk factor for female fertility.
Mostrar más [+] Menos [-]