Refinar búsqueda
Resultados 1-10 de 195
Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan)
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
Mostrar más [+] Menos [-]Arsenic resistance and horizontal gene transfer are associated with carbon and nitrogen enrichment in bacteria
2022
Neethu, C.S. | Saravanakumar, C. | Purvaja, R. | Robin, R.S. | Ramesh, R.
Coastal waters are confluences receiving large amounts of point and non-point sources of pollution. An attempt was made to explore microbial community interactions in response to carbon, nitrogen and metal pollution. Additionally, experiments were designed to analyze the influence of these factors on horizontal gene transfer (HGT). Shift in bacterial diversity dynamics by arsenic stress and nutrient addition in coastal waters was explored by metagenomics of microcosm setups. Phylogenetic analysis revealed equal distribution of Gammaproteobacteria (29%) and Betaproteobacteria (28%) in control microcosm. This proportional diversity from control switched to unique distribution of Gammaproteobacteria (44.5%)> Flavobacteria (17.7%)> Bacteriodia (11.92%)> Betaproteobacteria (11.52%) in microcosm supplemented with carbon, nitrogen and metal (C + N + M). Among metal-stressed systems, alpha diversity analysis indicated highest diversity of genera in C + N + M followed by N + M > C+M> metal alone. Arsenic and ampicillin sensitive E. coli XL1 blue and environmental strains (Vibrio tubiashii W85 and E. coli W101) were tested for efficiency of uptake of plasmid (P) pUCminusMCS (arsBᴿampᴿ) under varying stress conditions. Transformation experiments revealed that combined effect of carbon, nitrogen and metal on horizontal gene transfer (HGT) was significantly higher (p < 0.01) than individual factors. The effect of carbon on HGT was proved to be superior to nitrogen under metal stressed conditions. Presence of arsenic in experimental setups (P + M, P + N + M and P + C + M) enhanced the HGT compared to non-metal counterparts supplemented with carbon or nitrogen. Arsenic resistant bacterial isolates (n = 200) were tested for the ability to utilize various carbon and nitrogen substrates and distinct positive correlation (p < 0.001) was found between arsenic resistance and utilization of urea and nitrate. However, evident positive correlation was not found between carbon sources and arsenic resistance. Our findings suggest that carbon and nitrogen pollution in aquatic habitats under arsenic stress determine the microbial community dynamics and critically influence uptake of genetic material from the surrounding environment.
Mostrar más [+] Menos [-]Identification of three metallothioneins in the black soldier fly and their functions in Cd accumulation and detoxification
2021
Zhang, Jie | Shi, Zhihui | Gao, Zhenghui | Wen, Yiting | Wang, Wanqiang | Liu, Wen | Wang, Xiaoping | Zhu, Fen
The black soldier fly (BSF) Hermetia illucens has a strong tolerance to cadmium stress. This helps to use BSF in entomoremediation of heavy metal pollution. Rich metallothionein (MT) proteins were thought to be important for some insects to endure the toxicity of heavy metal. We identified and characterized three MTs genes in BSF (BSFMTs), including BSFMT1, BSFMT2A, and BSFMT2B. Molecular modeling was used to predict metal binding sites. Phylogenetic analysis was used to identify gene families. Overexpression of the recombinant black soldier fly metallothioneins was found to confer Cd tolerance in Escherichia coli. Finally, functions of BSFMTs in BSF were explored through RNA interference (RNAi). RNAi results of BSFMT2B showed that the larval fresh weight decreased significantly, and the larvae mortality increased significantly. This study suggests that BSFMTs have important properties in Cd detoxification and tolerance in BSF. Further characterization analyses of physiological function about metallothioneins are necessary in BSF and other insects.
Mostrar más [+] Menos [-]Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina
2021
Massello, Francisco L. | Donati, Edgardo
Metal pollution is a great concern worldwide and the development of new technologies for more sustainable extraction methods as well as for the remediation of polluted sites is essential. Extremophilic microorganisms are attractive for this purpose since they have poly-resistance mechanisms which make them versatile. In this work, we sampled an acidic river and a hot spring of Caviahue-Copahue volcanic environment. The indigenous microbial communities were exposed to five heavy metals (Cd, Co, Cu, Ni and Zn) in batch-cultures favouring different metabolisms of biotechnological interest. Remarkably, high tolerance values were reached in all the cultures, even though most of the metals studied were not present in the environmental sample. Particularly, outstanding tolerances were exhibited by acidophiles, which grew at concentrations as high as 400 mM of Zn and Ni. High-throughput amplicon sequencing of 16S rRNA gene was used to study the indigenous communities and the resistant consortia. We took three approaches for the analysis: phylotypes, OTUs and amplicon sequence variants (ASVs). Interestingly, similar conclusions were drawn in all three cases. Analysing the phylogenetic structure and functional potential of the adapted consortia, we found that the strongest selection was exerted by the culture media. Notably, there was a poor correlation between alpha diversity and metal stress; furthermore, metal stress did not seem to harm the functional potential of the consortia. All these results reveal a great adaptability and versatility. At the end, 25 metal-resistant extremophilic consortia with potential uses in bioremediation, bioleaching or biomonitoring processes were obtained.
Mostrar más [+] Menos [-]Microbial mechanisms related to the effects of bamboo charcoal and bamboo vinegar on the degradation of organic matter and methane emissions during composting
2021
Guo, Honghong | Gu, Jie | Wang, Xiaojuan | Song, Zilin | Yu, Jing | Lei, Liusheng
In this study, functional microbial sequencing, quantitative PCR, and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were employed to understand the microbial mechanisms related to the effects of bamboo charcoal (BC) and bamboo vinegar (BV) on the degradation of organic matter (OM) and methane (CH₄) emissions during composting. BC + BV resulted in the highest degradation of OM. BV was most effective treatment in controlling CH₄ emissions and it significantly reduced the abundance of the mcrA gene. Methanobrevibacter, Methanosarcina, and Methanocorpusculum were closely related to CH₄ emissions during the thermophilic composting period. PICRUSt analysis showed that BC and/or BV enhanced the metabolism associated with OM degradation and reduced CH₄ metabolism. Structural equation modeling indicated that BC + BV strongly promoted the metabolic activity of microorganisms, which had a positive effect on CH₄ emissions. Together these results suggest that BC + BV may be a suitable composting strategy if the aerobic conditions can be effectively improved during the thermophilic composting period.
Mostrar más [+] Menos [-]Effects of Potamogeton crispus decline in the rhizosphere on the abundance of anammox bacteria and nirS denitrifying bacteria☆
2020
Hu, Jinlong | Zhou, Yuhao | Lei, Ziyan | Liu, Guanglong | Hua, Yumei | Zhou, Wenbing | Wan, Xiaoqiong | Zhu, Duanwei | Zhao, Jianwei
Bacteria involved with ecosystem N cycling in the rhizosphere of submerged macrophytes are abundant and diverse. Any declines of submerged macrophytes can have a great influence on the abundance and diversity of denitrifying bacteria and anammox bacteria. Natural decline, tardy decline, and sudden decline methods were applied to cultivated Potamogeton crispus. The abundance of anammox bacteria and nirS denitrifying bacteria in rhizosphere sediment were detected using real-time fluorescent quantitative PCR of 16S rRNA, and phylogenetic trees were constructed to analyze the diversities of these two microbes. The results indicated that the concentration of NH₄⁺ in pore water gradually increased with increasing distances from the roots, whereas, the concentration of NO₃⁻ showed a reverse trend. The abundance of anammox bacteria and nirS denitrifying bacteria in sediment of declined P. crispus populations decreased significantly over time. The abundance of these two microbes in the sudden decline group were significantly higher (P > 0.05) than the other decline treatment groups. Furthermore, the abundances of these two microbes were positively correlated, with RDA analyses finding the mole ratio of NH₄⁺/NO₃⁻ being the most important positive factor affecting microbe abundance. Phylogenetic analysis indicated that the anammox bacteria Brocadia fuigida and Scalindua wagneri, and nirS denitrifying bacteria Herbaspirillum and Pseudomonas, were the dominant species in declined P. crispus sediment. We suggest the sudden decline of submerged macrophytes would increase the abundance of anammox bacteria and denitrifying bacteria in a relatively short time.
Mostrar más [+] Menos [-]Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage
2020
Xu, Rui | Li, Baoqin | Xiao, Enzong | Young, Lily Y. | Sun, Xiaoxu | Kong, Tianle | Dong, Yiran | Wang, Qi | Yang, Zhaohui | Chen, Lei | Sun, Weimin
Acid mine drainage (AMD) is harmful to the environment and human health. Microorganisms-mineral interactions are responsible for AMD generation but can also remediate AMD contamination. Understanding the microbial response to AMD irrigation will reveal microbial survival strategies and provide approaches for AMD remediation. A terrace with sharp geochemical gradients caused by AMD flooding were selected to study the microbial response to changes in environmental parameters related to AMD contamination. AMD intrusion reduced soil microbial community diversity and further changed phylogenetic clustering patterns along the terrace gradient. We observed several genera seldom reported in AMD-related environments (i.e., Corynebacterium, Ochrobactrum, Natronomonas), suggesting flexible survival strategies such as nitrogen fixation, despite the poor nutritional environment. A co-occurrence network of heavily-contaminated fields was densely connected. The phyla Proteobacteria, Acidobacteria, Chloroflexi, and Euryarchaeota were all highly interconnected members, which may affect the formation of AMD. Detailed microbial response to different soil characterizations were highlighted by random forest model. Results revealed the top three parameters influencing the microbial diversity and interactions were pH, Fe(III), and sulfate. Various acidophilic Fe- and S-metabolizing bacteria were enriched in the lower fields, which were heavily contaminated by AMD, and more neutrophiles prevailed in the less-contaminated upper fields. Many indicator species in the lower fields were identified, including Desulfosporosinus, Thermogymnomonas, Corynebacterium, Shewanella, Acidiphilium, Ochrobactrum, Leptospirillum, and Allobaculum, representing acid-tolerant bacteria community in relevant environment. The detection of one known sulfate-reducing bacteria (i.e., Desulfosporosinus) suggested that biotic sulfate reduction may occur in acidic samples, which offers multiple advantages to AMD contamination treatment. Collectively, results suggested that the geochemical gradients substantially altered the soil microbiota and enriched the relevant microorganisms adapted to the different conditions. These findings provide mechanistic insights into the effects of contamination on the soil microbiota and establish a basis for in situ AMD bioremediation strategies.
Mostrar más [+] Menos [-]Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils
2019
Wang, Meng | Chen, Shibao | Chen, Li | Wang, Duo
Land degradation by salinization and sodification changes soil function, destroys soil health, and promotes bioaccumulation of heavy metals in plants, but little is known about their fundamental mechanisms in shaping microbial communities and regulating microbial interactions. In this study, we explored the impact of saline-alkaline (SA) stress on soil bacterial and fungal community structures in different Cd-contaminated soils of Dezhou, Baoding, Xinxiang, Beijing and Shenyang cities from the North China Plain, China. Increased soil salinity and alkalinity enhanced Cd availability, indicated by significant increases in available Cd2+ in soil solution of 34.1%–49.7%, soil extractable Cd of 32.0–51.6% and wheat root Cd concentration of 24.5%–40.2%, as well as decreased activities of antioxidative enzymes of wheat root when compared with CK (no extra neutral or alkaline salts added). Soil bacteria were more active in response to the SA stress than fungi, as the significant structural reorganization of soil bacterial microbiota rather than fungal microbiota between SA and CK treatments was illustrated by principal component analysis. Adding neutral and alkaline salts enriched oligotrophic and haloalkaliphilic taxa in the Sphingobacteriaceae, Cellvibrionaceae, and Caulobacteraceae bacterial families, but decreased some Acidobacteria such as subgroup 6_norank, which was a sensitive biomarker that responded only to Cd contamination in CK-treated soils. Conversely, fungi were more sensitive to soil differences than bacteria: the composition of the fungal community was significantly different among different soil types. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the microbial community structure and network interactions were altered to strengthen the adaptability of microorganisms to SA stress; the changes in structure and network interactions were proposed to contribute to competitive interactions. Most of the keystone genera identified in SA-treated soils, such as Blastococcus, Gemmatimonas, RB41, or Candida, had relatively low abundances (<1%), indicating their disproportionate ecological roles in triggering resistance or tolerance to SA stress and Cd toxicity.
Mostrar más [+] Menos [-]Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs
2018
Becker, Daniel J. | Chumchal, Matthew M. | Broders, Hugh G. | Korstian, Jennifer M. | Clare, Elizabeth L. | Rainwater, Thomas R. | Platt, Steven G. | Simmons, Nancy B. | Fenton, M Brock
Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems.
Mostrar más [+] Menos [-]Accumulate or eliminate? Seasonal mercury dynamics in albatrosses, the most contaminated family of birds
2018
Cherel, Yves | Barbraud, Christophe | Lahournat, Maxime | Jaeger, Audrey | Jaquemet, Sébastien | Wanless, Ross M. | Phillips, Richard A. | Thompson, D. R. (David R.) | Bustamante, Paco
Albatrosses (Diomedeidae) are iconic pelagic seabirds whose life-history traits (longevity, high trophic position) put them at risk of high levels of exposure to methylmercury (MeHg), a powerful neurotoxin that threatens humans and wildlife. Here, we report total Hg (THg) concentrations in body feathers from 516 individual albatrosses from 35 populations, including all 20 taxa breeding in the Southern Ocean. Our key finding is that albatrosses constitute the family of birds with the highest levels of contamination by Hg, with mean feather THg concentrations in different populations ranging from moderate (3.8 μg/g) to exceptionally high (34.6 μg/g). Phylogeny had a significant effect on feather THg concentrations, with the mean decreasing in the order Diomedea > Phoebetria > Thalassarche. Unexpectedly, moulting habitats (reflected in feather δ13C values) was the main driver of feather THg concentrations, indicating increasing MeHg exposure with decreasing latitude, from Antarctic to subtropical waters. The role of moulting habitat suggests that the majority of MeHg eliminated into feathers by albatrosses is from recent food intake (income strategy). They thus differ from species that depurate MeHg into feathers that has been accumulated in internal tissues between two successive moults (capital strategy). Since albatrosses are amongst the most threatened families of birds, it is noteworthy that two albatrosses listed as Critical by the World Conservation Union (IUCN) that moult and breed in temperate waters are the most Hg-contaminated species (the Amsterdam and Tristan albatrosses). These data emphasize the urgent need for robust assessment of the impact of Hg contamination on the biology of albatrosses and they document the high MeHg level exposure of wildlife living in the most remote marine areas on Earth.
Mostrar más [+] Menos [-]