Refinar búsqueda
Resultados 1-7 de 7
Effects of long-term exposures to SO2 and NO2 on Poa pratensis and other grasses
1983
Whitmore, M.E. | Mansfield, T.A. (Lancaster Univ. (UK))
Phytostabilisation—A Sustainable Remediation Technique for Zinc in Soils
2009
Padmavathiamma, Prabha | Li, Loretta
Two studies were conducted to determine a feasible and practical phytoremediation strategy for Zn-contaminated soils. The aim of the first study was to identify promising plant species capable of Zn remediation for the soils and climatic conditions of British Columbia. The purpose of the second study was to assess the effects of soil amendments in modifying the soil properties and providing the right conditions for the plants to immobilise Zn. Promising plants for phytostabilisation in the first study (Lolium perenne, Festuca rubra and Poa pratensis) were tested in the presence of soil amendments (lime, phosphate and compost, both individually and in combination) in the second study. The efficiency of treatments to stabilise Zn was based on Zn fractionation in the soil and on absorption and partitioning of Zn in plants. Maximum Zn immobilisation was achieved in the soil by a combination of lime, phosphate and compost, in conjunction with growth of P. pratensis.
Mostrar más [+] Menos [-]Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery
2016
Saud, Shah | Yajun, Chen | Shah, Fahad | Hussain, Saddam | Na, Li | Xin, Li | Alhussien, Safa Abd Alaleem Fadal Elseed
Drought stress is the most pervasive threat to plant growth, which disrupts the photosynthesis and its associated metabolic activities, while silicate (Si) application may have the potential to alleviate the damaging effects of drought on plant growth. In present study, the role of Si in regulating the photosynthesis and its associated metabolic events in Kentucky bluegrass (cv. Arcadia) were investigated under drought stress. Drought stress and four levels (0, 200, 400, 800 mg L⁻¹) of Si (Na₂SiO₃.9H₂O) were imposed on 1-year-old plants removed from field and cultured under glasshouse conditions. After 20 days of drought stress, the plants were re-watered to reach soil field capacity for the examination of recovery on the second and the seventh day. The experiment was arranged in completely randomized design replicated four times. Drought stress severely decreased the photosynthesis, water use efficiency, stomatal conductance, cholorophyll contents, Rubisco activity, and Rubisco activation state in Kentucky bluegrass. Nevertheless, application of Si had a positive influence on all these attributes, particularly under stress conditions. As compared to control, Si application at 400 mg L⁻¹ recorded 78, 64, and 48 % increase in photosynthesis, Rubisco initial activity, and Rubisco total activity, respectively, at 20 days of drought. Higher photosynthesis and higher Rubisco activity in Si-applied treatments suggest that Si may have possible (direct or indirect) role in maintenance of more active Rubisco enzyme and Rubisco activase and more stable proteins for carbon assimilation under stress conditions, which needs to be elucidated in further studies.
Mostrar más [+] Menos [-]Matrix-Based Fertilizers Reduce Nutrient Leaching While Maintaining Kentucky Bluegrass Growth
2010
Entry, James A. | Sojka, R. E.
We tested the efficacy of matrix-based fertilizers (MBFs) to improve Kentucky bluegrass (Poa pratensis L.) growth while reducing NH, NO3, dissolved reactive phosphorus (DRP), and total phosphorus (TP) compared to commercial slow-release fertilizer (SRF) Polyon®, ESN®, and Avail® in greenhouse column studies. The MBFs covered a range of inorganic N and P in compounds that are relatively loosely bound (MBF6) and more tightly bound compounds (MBF7) with Al(SO4)318H2O and/or Fe2(SO4)33H2O and with high ionic exchange compounds starch, cellulose, and lignin. The total amount of NO3 and NH4 leached was greater from columns receiving Polyon® and ESN® fertilizers than all other treatments. The MBF6+Avail® or MBF7+Avail® fertilizers leached 64–68% less NO3 than Polyon® (43-0-0) and ESN® (46-0-0), and 73–76% less TDP and TP than Avail® (10-34-0). A greater amount of NO3 was leached from the MBF6+Avail® and the MBF7+Avail® treatments than the other MBF fertilizer treatments. Shoot and root biomass were greater when plants received the Avail®, MBF6+Avail®, and MBF7+Avail® fertilizer treatments than the other fertilizer treatments. When combined with small quantities of commercial SRFs, these new MBFs were able to maintain plant growth while reducing N and P leaching. These new MBF formulations do not depend on organic or inorganic coatings to reduce N and P leaching and with further testing and development could be effective commercial fertilizers.
Mostrar más [+] Menos [-]Unusual photodegradation reactions of Asteraceae and Poaceae grass pollen enzymatic extracts on P25 photocatalyst
2021
Sapiña, Maria | Jimenez-Relinque, Eva | Roman, Elisa | Nevshupa, Roman | Castellote, Marta
In previous studies, it was demonstrated that photocatalysis by TiO₂ nanoparticles can be effective for decomposition of pollen grains and pollen allergen extracts (PAEs) for Cupressus arizonica and Platanus hybrida species. In this work, the chemical and photochemical processes of five types of PAEs belonging to family Asteraceae, tribe Astereae, and family Poaceae, tribes Poeae and Triticea, were studied. It was confirmed that the PAEs suffered almost complete decomposition, which likely led to gaseous final products. For the species of Poeae tribe, i.e., Poa pratensis, Festuca pratensis, and Avena sativa, an unusual surface chemical modification of the photocatalyst consisting in the appearance of new bands on fine core level spectra of Ti 2p, C 1s, and O 1s was observed. These changes were associated with possible doping of TiO₂ with C and N by pollen extracts. This was accompanied by a red shift of absorption spectra. The results suggest that some components of Poeae pollen can be grafted on TiO₂ surface and they can activate the photocatalyst in the visible range. These findings can open a new pathway to eco-friendly chemical engineering of photocatalysts using organic biological compounds.
Mostrar más [+] Menos [-]Rhizosphere Influence and Seasonal Impact on Phytostabilisation of Metals—A Field Study
2012
Padmavathiamma, Prabha K. | Li, Loretta Y.
Field experiments were conducted to assess the influence of plant growth and amendment addition on phytostabilisation of copper (Cu), lead (Pb), manganese (Mn) and zinc (Zn) along highway soil in southwest British Columbia, Canada. The plant species tested were Lolium perenne L (perennial rye grass), Festuca rubra L. (creeping red fescue) and Poa pratensis L. (Kentucky blue grass) and the amendments, lime and phosphate. The treatment efficiencies were assessed during different seasons as a completely randomized factorial experiment in split plot design. The research tasks involved: (1) quantifying the seasonal extent of metal accumulation in soil and assessing the seasonal impact on metal speciation for different soil amendments and plant species; (2) determining seasonal accumulation differences between sampling periods in plant parts; and (3) assessing the influence of root–soil interactions on metal dynamics. The amendments decreased the exchangeable fraction and plant uptake of all four metals. The lowest mobile fractions (exchangeable and carbonate bound) were found in soils growing Festuca for Cu, Lolium for Mn and a Lolium/Poa/Festuca combination for Pb and Zn. Metal accumulation and metal dynamics in the rhizosphere soil are compared with those of the bulk soil. The final outcome was the development of a remediation strategy for all four metals involving suitable plants and amendments and incorporating seasonal and rhizosphere influences.
Mostrar más [+] Menos [-]How Kentucky bluegrass tolerate stress caused by sodium chloride used for road de-icing?
2019
Mastalerczuk, Grażyna | Borawska-Jarmułowicz, Barbara | Kalaji, Hazem Mohamed
Salts used in road de-icing during winter season inhibit the growth and development of lawn grass species. The mechanism of plant tolerance/sensitivity to such treatments is still not clear. Moreover, there is a lack of fast and non-invasive tool to detect the effect of these salts on plants growth. This study was designed to understand the tolerance mechanism of Kentucky bluegrass plants on salinity, based on some biometric and physiological parameters. In this experiment, we simulated the urban conditions where salts are used intensively for roads de-icing. Germination capacity was evaluated at five salt solutions of NaCl (0, 50, 100, 150 and 200 mM), and physiological parameters were measured during the tillering phase at salinity levels of 0, 150 and 300 mM of NaCl. Seeds of Kentucky bluegrass did not germinate under salinity. During tillering phase, salinity affected length, area and dry mass of roots as well as the relative water content of plants, negatively. Moreover, it influenced the maximum chlorophyll fluorescence yield, quantum yield of photosystem II and electron transport rate at early period of stress. This allows us to recommend these parameters for early detection of soil salinity effects on Kentucky bluegrass plants. It seems to be that the tolerance of this plant towards salinity is based on retaining water content in leaves that allow more efficient functioning of photosynthetic apparatus.
Mostrar más [+] Menos [-]