Refinar búsqueda
Resultados 1-10 de 22
Use of a chemical equilibrium model to understand soil chemical processes that influence soil solution and surface water alkalinity.
1988
David M.B. | Reuss J.O. | Walthall P.M.
Ion leaching from a sugar maple forest in response to acidic deposition and nitrification.
1989
Foster N.W. | Hazlett P.W. | Nicolson J.A. | Morrison I.K.
The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study
2022
Chen, Chaoyue | Huang, Jen-How | Meusburger, Katrin | Li, Kai | Fu, Xuewu | Rinklebe, Jörg | Alewell, Christine | Feng, Xinbin
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m⁻² yr⁻¹ from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg⁻¹) and soil storage (100 mg m⁻³) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182–269 μg kg⁻¹). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg⁻¹), but with much higher Hg soil storage (54–120 mg m⁻³) than in the Seehornwald forest floor (18–27 mg m⁻³). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4–101 ng L⁻¹) and in runoff of Changbai Mountain (1.26–5.62 ng L⁻¹) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Mostrar más [+] Menos [-]Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles – Diversification and its interpretation: A new approach
2016
Szuszkiewicz, Marcin | Łukasik, Adam | Magiera, Tadeusz | Mendakiewicz, Maria
Magnetic and geochemical parameters of soils are determined with respect to geology, pedogenesis and anthropopression. Depending on local conditions these factors affect magnetic and geochemical signals simultaneously or in various configurations. We examined four type of soils (Entic Podzol, Eutric Cambisol, Humic Cambisol and Dystric Cambisol) developed on various bedrock (the Tumlin Sandstone, basaltoid, amphibolite and serpentinite, respectively). Our primary aim was to characterize the origin and diversification of the magnetic and geochemical signal in soils in order to distinguish the most reliable methods for correct interpretation of measured parameters. Presented data include selected parameters, both magnetic (mass magnetic susceptibility – χ, frequency-dependent magnetic susceptibility – χfd and thermomagnetic susceptibility measurement – TSM), and geochemical (selected heavy metal contents: Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn). Additionally, the enrichment factor (EF) and index of geoaccumulation (Igeo) were calculated. Our results suggest the following: (1) the χ/Fe ratio may be a reliable indicator for determining changes of magnetic signal origin in soil profiles; (2) magnetic and geochemical signals are simultaneously higher (the increment of χ and lead and zinc was noted) in topsoil horizons because of the deposition of technogenic magnetic particles (TMPs); (3) EF and Igeo evaluated for lead and zinc unambiguously showed anthropogenic influence in terms of increasing heavy metal contents in topsoil regardless of bedrock or soil type; (4) magnetic susceptibility measurements supported by TSM curves for soil samples of different genetic horizons are a helpful tool for interpreting the origin and nature of the mineral phases responsible for the changes of magnetic susceptibility values.
Mostrar más [+] Menos [-]Modelling Hg mobility in podzols: Role of soil components and environmental implications
2020
Gómez-Armesto, Antía | Martínez Cortizas, Antonio | Ferro-Vázquez, Cruz | Méndez-López, Melissa | Arias-Estévez, Manuel | Nóvoa-Muñoz, Juan Carlos
A high-resolution soil sampling has been applied to two forest podzols (ACB-I and ACB-II) from SW Europe in order to investigate the soil components and processes influencing the content, accumulation and vertical distribution of Hg. Total Hg contents (THg) were 28.0 and 23.6 μg kg⁻¹ in A horizons of ACB-I and ACB-II, then they strongly decreased in the E horizons and peaked in the Bhs horizons of both soils (55.3 and 63.0 μg kg⁻¹). THg decreased again in BwC horizons to 17.0 and 39.8 μg kg⁻¹. The Bhs horizons accounted for 46 and 38% of the total Hg stored (ACB-I and ACB-II, respectively). Principal component analysis (PCA) and principal components regression (PCR), i.e. using the extracted components as predictors, allowed to distinguish the soil components that accounted for Hg accumulation in each horizon. The obtained model accurately predicted accumulated Hg (R² = 0.845) through four principal components (PCs). In A horizons, Hg distribution was controlled by fresh soil organic matter (PC4), whereas in E horizons the negative values of all PCs were consistent with the absence of components able to retain Hg and the corresponding very low THg concentrations. Maximum THg contents in Bhs horizons coincided with the highest peaks of reactive Fe and Al compounds (PC1 and PC2) and secondary crystalline minerals (PC3) in both soils. The THg distribution in the deepest horizons (Bw and BwC) seemed to be influenced by other pedogenetic processes than those operating in the upper part of the profile (A, E and Bhs horizons). Our findings confirm the importance of soils in the global Hg cycling, as they exhibit significant Hg pools in horizons below the uppermost O and A horizons, preventing its mobilization to other environmental compartments.
Mostrar más [+] Menos [-]Modelling the effects of nitrogen addition on soil nitrogen status and nitrogen uptake in a Norway spruce stand in Denmark
1998
Beier, C. | Eckersten, H. (RISO National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark))
Effects of enhanced N deposition as (NH4)2SO4 and HNO3 on base cation leaching from podzol microcosms
1998
White, C.C. | Cresser, M.S. (Department of Plant and Soil Science, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU (United Kingdom))
Seasonal variability of total and easily leachable element contents in topsoils (0-5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia)
1997
Niskavaara, H. | Reimann, C. | Chekushin, V. | Kashulina, G. (Geological Survey of Finland, PO Box 77, FIN-96101 Rovaniemi (Finland))
Factors influencing NO3 concentrations in rain, stream water, ground water and podzol profiles of eight small catchments in the European Arctic
1998
Kashulina, G. | Reimann, C. | Finne, T.E. | Caritat, P. de | Niskavaara, H. (INEP, Kola Science Centre, Fersman st., 14, Apatity, 184200 (Russian Federation))
Forms of cadmium in sandy soils after amendment with soils of higher fixing capacity
1995
Mann, S.S. | Ritchie, G.S.P. (Soil Science and Plant Nutrition, School of Agriculture, University of Western Australia, Nedlands, WA, 6009 (Australia))