Refinar búsqueda
Resultados 1-10 de 92
Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales
2021
Miranda, Chelsea D. | Crippen, Tawni L. | Cammack, Jonathan A. | Tomberlin, Jeffery K.
The industrial production of insects for waste management or as a protein source is becoming vital to our society. Large volumes of manure are produced by concentrated animal facilities around the globe that must be managed, utilized, and disposed of properly. Flies offer a partial solution with their abilities to reduce these wastes and heavy metal pollutants. Meat and crop proteins are being supplemented by insect proteins for many feeds across the globe, yet science-based studies behind the mass-rearing of insects are still in their infancy. In the current study, the percent change in the composition of nutrients, heavy metals, and fiber, in dairy, poultry, and swine manure degraded by either black soldier fly (BSF) or house fly (HF) larvae was explored. Pre-digested and post-digested manure samples were collected from four independent studies that differed in production scale (number of larvae and feeding regimen): 1) BSF small-scale (100 larvae fed incrementally), 2) HF small-scale (100 larvae fed incrementally), 3) BSF large-scale (10,000 larvae fed a single time), and 4) HF large-scale (4,000 larvae fed a single time). Results indicate that nitrogen is a key nutrient impacted by larval digestion of manure by both species, regardless of scale. However, scale significantly impacted reductions of other nutrients, as did the type of manure in which the insects were reared. Ultimately, this study demonstrated that manure type and rearing scale impact the ability of BSF and HF larvae to reduce nutrients and heavy metals in manure, and thus insect management procedures need to be congruent with production emphases of the insects for waste management or protein products. Failure to take scale into consideration could lead to inaccurate assumptions related to industrialized efforts on this topic.
Mostrar más [+] Menos [-]Dietary intake of legacy and emerging halogenated flame retardants using food market basket estimations in Nanjing, eastern China
2020
Jian, Kang | Zhao, Luming | Ya, Miaolei | Zhang, Yayun | Su, Huijun | Meng, Weikun | Li, Jianhua | Su, Guanyong
Food products are inevitably contaminated by flame retardants throughout their lifecycle (i.e., during production, use, and disposal). In order to evaluate the dietary intake of legacy and emerging halogenated flame retardants (HFRs) in typical market food in China, we investigate the distribution and profile of 27 legacy polybrominated diphenyl ethers (PBDEs) and 16 emerging HFRs (EHFRs) in 9 food categories (meat, poultry, aquatic food, eggs, dairy products, cereals, vegetables, nuts and fruits, and sugar). A total of 105 food samples collected from three markets in Nanjing, eastern China were included for evaluation. The highest concentrations of PBDEs and EHFRs were found in aquatic foods (means of 0.834 ng/g wet weight (ww) and 0.348 ng/g ww, respectively), and the lowest concentrations were found in sugar (means of 0.020 ng/g ww for PBDEs and 0.014 ng/g ww for EHFRs). 2,2′,4-tribromodiphenyl ether (BDE-17), a legacy HFR, and hexabromobenzene (HBBz), an EHFR, were the predominant pollutants in the investigated food samples. Concentrations of HBBz and 2,3-dibromopropyl tribromophenyl ether (DPTE) were comparable to those of some PBDEs in certain food samples. The concentrations of the total EHFRs and total PBDEs found in animal-based food samples were significantly greater than those in plant-based food samples. Comparison of the estimated total dietary intake of HFRs and their corresponding non-cancer reference dose (United States Environmental Protection Agency) suggests a low overall health risk. To the best of our knowledge, the present study is the first to simultaneously determine 27 PBDEs and 16 EHFRs in representative foods from Chinese markets. BDE-17, HBBz, and DPTE were the predominant congeners among the 43 investigated HFRs and meat and aquatic foods were the primary sources of PBDEs and EHFRs to the total local dietary intake.
Mostrar más [+] Menos [-]Mercury risk in poultry in the Wanshan Mercury Mine, China
2017
Yin, Runsheng | Zhang, Wei | Sun, Guangyi | Feng, Zhaohui | Hurley, James P. | Yang, Liyuan | Shang, Lihai | Feng, Xinbin
In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4–62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2–3917.1 ng/g; MeHg: 7.1–62.8 ng/g) and blood (THg: 12.3–338.0 ng/g; MeHg: 1.4–17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3–238.1 μg; MeHg: 2.2–15.6 μg), ducks (THg: 15.3–238.1 μg; MeHg: 3.5–14.7 μg) and geese (THg: 83.8–93.4 μg; MeHg: 15.4–29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively.
Mostrar más [+] Menos [-]Heterogeneity of atmospheric ammonia at the landscape scale and consequences for environmental impact assessment
2013
Vogt, Esther | Dragosits, Ulrike | Braban, Christine F. | Theobald, Mark R. | Dore, Anthony J. | van Dijk, Netty | Tang, Y Sim | McDonald, Chris | Murray, Scott | Rees, R. M. (Robert M.) | Sutton, Mark A.
We examined the consequences of the spatial heterogeneity of atmospheric ammonia (NH3) by measuring and modelling NH3 concentrations and deposition at 25 m grid resolution for a rural landscape containing intensive poultry farming, agricultural grassland, woodland and moorland. The emission pattern gave rise to a high spatial variability of modelled mean annual NH3 concentrations and dry deposition. Largest impacts were predicted for woodland patches located within the agricultural area, while larger moorland areas were at low risk, due to atmospheric dispersion, prevailing wind direction and low NH3 background. These high resolution spatial details are lost in national scale estimates at 1 km resolution due to less detailed emission input maps. The results demonstrate how the spatial arrangement of sources and sinks is critical to defining the NH3 risk to semi-natural ecosystems. These spatial relationships provide the foundation for local spatial planning approaches to reduce environmental impacts of atmospheric NH3.
Mostrar más [+] Menos [-]Nitrous oxide supersaturation at the liquid/air interface of animal waste
2009
Makris, Konstantinos C. | Andra, Syam S. | Hardy, Michael | Sarkar, Dibyendu | Datta, Rupali | Bach, Stephan B.H. | Mullens, Conor P.
Concentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N2O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N2O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N2O supersaturation at the liquid/air interface. The concentration of dissolved N2O in poultry litter (PL) aqueous suspensions at 25 °C was 0.36 μg N2O mL−1, at least an order of magnitude greater than that measured in water in equilibrium with ambient air, suggesting N2O supersaturation. There was a nonlinear increase in the N2O Henry constants of PL from 2810 atm/mole fraction at 35 °C to 17 300 atm/mole fraction at 41 °C. The extremely high N2O Henry constants were partially ascribed to N2O complexation with aromatic moieties. Complexed N2O structures were unstable at temperatures > 35 °C, supplying the headspace with additional free N2O concentrations. Temperature-dependent N2O supersaturation at the liquid/air interface of animal waste.
Mostrar más [+] Menos [-]Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system
2022
Shah, Ghulam Mustafa | Ali, Hifsa | Ahmad, Iftikhar | Kāmrān, Muḥammad | Hammad, Mohkum | Shah, Ghulam Abbas | Bakhat, Hafiz Faiq | Waqar, Atika | Guo, Jianbin | Dong, Renjie | Rashid, Muhammad Imtiaz
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO₂ emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO₂ emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
Mostrar más [+] Menos [-]Inheritance, stability, cross-resistance, and life history parameters of a clothianidin-selected strain of house fly, Musca domestica Linnaeus
2021
Shah, Rizwan Mustafa | Shad, Sarfraz Ali
The house fly, Musca domestica L., is a cosmopolitan insect pest of public and animal health importance that serves as a mechanical vector of pathogens. Aimed at prospective resistance management to reduce environmental pollution, we characterized the inheritance pattern, realized heritability, fitness cost, cross resistance, stability and mechanism of clothianidin resistance in M. domestica that were collected from the poultry farm. By continuous selection with clothianidin for 11 generations, the clothianidin selected M. domestica strain (Clotha-SEL) developed a 3827-fold resistance compared to a susceptible strain. However, resistance to clothianidin was proved to be unstable when selection with clothianidin was removed for five generations (G₇ to G₁₂). Inheritance pattern analysis at G₈ of Clotha-SEL (RR = 897) revealed that resistance to clothianidin was polygenic, autosomal and incompletely dominant. Realized heritability (h²) for resistance value was 0.38 (at G₁₁) in the tested strain. Synergist bioassays showed that microsomal oxidases and esterases might not contribute significantly in resistance evolution. Fitness costs of clothianidin resistance were present, for example, reduction in growth potential of the Clotha-SEL strain in comparison to the untreated counterpart strain (UNSEL) was observed. No cross resistance to bifenthrin and fipronil and a very low cross-resistance to spinosad were observed. These insecticides could be alternated with clothianidin as an insecticide resistance management tool to sustain its efficacy for a longer time period. These results shall be utilized to devise a proactive resistance management strategy for use of clothianidin against M. domestica that will be helpful to alleviate the allied threats to environmental and human health.
Mostrar más [+] Menos [-]High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces
2020
Zhao, Huiru | Sun, Ruonan | Yu, Pingfeng | Alvarez, Pedro J.J.
This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 10⁹, 10⁸, 10⁹, and 10¹⁰ copies/g dry feces for tetW, blaTEM, sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 10⁷ copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks.
Mostrar más [+] Menos [-]Human exposure to PBDEs in e-waste areas: A review
2020
Polybrominated biphenyl ethers (PBDEs) are commonly added to electronic products for flame-retardation effects, and are attracting more and more attentions due to their potential toxicity, durability and bioaccumulation. This study conducts a sysmtematic review to understand the human exposure to PBDEs from e-waste recycling, especially exploring the exposure pathways and human burden of PBDEs as well as investigating the temporal trend of PBDEs exposure worldwide. The results show that the particular foods (contaminated fish, poultry, meat and breast milk) ingestion, indoor dust ingestion and indoor air inhalation may be key factors leading to human health risks of PBDEs exposure in e-waste recycling regions. Residents and some vulnerable groups (occupational workers and children) in e-waste recycling areas may face higher exposure levels and health risks. PBDE exposure is closely related to exposure level, exposure duration, e-waste recycling methods, and dietary customs. High levels of PBDEs are found in human tissues (breast milk, hair, blood (serum), placenta and other tissues) in e-waste areas, at far higher levels than in other areas. Existing data indicate that PBDE exposure levels do not present any apparent downward trend, and will possibly cause serious human diseases. More epidemiological studies are still needed to provide a solid basis for health risk assessment.
Mostrar más [+] Menos [-]Dietary exposure and risk assessment of exposure to hexabromocyclododecanes in a Taiwan population
2019
Lee, Ching-Chang | Zhang, Weixiang | Chen, Hsiu-Ling
Hexabromocyclododecane (HBCD) is commonly used in commercial products and factories. HBCDs can be detected in the air, bioaccumulated deposits, water, soil, sediments, and in biota and foodstuffs in the food-chain because they are not chemically bound to the polymer. We determined the levels of α-, β-, and γ-HBCDs in 270 foodstuffs and the doses of HBCDs Taiwanese are normally exposed to. We also wanted to create a strategy of risk management for HBCDs based on margins of exposure (MOE). HBCDs were frequently detectible in fish, seafood, and poultry. Their highest concentrations were in fish, oil, poultry, and livestock. The highest estimated daily intake was in 0- to 3-year-olds (1.576 ng/kg/day), and lower in 3- to 6- (1.064 ng/kg/day), 6- to 12- (0.899 ng/kg/day), and lowest in 12- to 16- (0.632 ng/kg/day) year-olds. The exposure doses to HBCDs indicated no health concern for Taiwanese. Except for fish, significant concentrations of α- and γ-HBCDs were detected in many other foodstuffs, which might indicate that exposure to HBCD is a relatively recent problem. Therefore, one goal of a management policy should be to follow-up the flow direction of HBCDs in Taiwan.
Mostrar más [+] Menos [-]