Refinar búsqueda
Resultados 1-10 de 888
Assessment of the limnological characteristics of Lake Bosomtwe in the Ashanti Region of Ghana
2022
Owusu-Boateng, Godfred | Ampofo-Yeboah, Akwasi | Agyemang, Thomas Kwaku | Sarpong, Kofi
The quality of the water from Lake Bosomtwe was assessed to aid in the conservation decision on the lake. Twenty-six parameters of physico-chemical, bacteriological, and organic effects and major and trace ions were evaluated using the principal component analysis. The levels of these parameters were also compared with surface water benchmarks of Ghana EPA, WHO, EU, US EPA and CCEM. As prescribed by the benchmarks of these regulatory bodies, the mean levels of temperature, pH, dissolved oxygen, total suspended solids, total dissolved solids, nitrates, phosphate, biochemical oxygen demand, chemical oxygen demand, total hardness, conductivity, alkalinity, turbidity and fluorine did not signal any lake pollution, but sulphate, total and faecal coliforms, chlorophyll-a, cadmium and mercury showed pollution tendencies. Temperature, pH, dissolved oxygen, total suspended solids, total dissolved solids, nitrates, phosphate, sulphate and total coliform bacteria were found to be the main parameters that drive 71.2% of the limnological characteristics of the lake water and deserve careful consideration in designing conservation strategies for the lake.
Mostrar más [+] Menos [-]Assessing environmental contamination of River Ganga using correlation and multivariate analysis
2015
Bhutiani, Rakesh | Khanna, D.R. | Tyagi, Bharti | Tyagi, Prashant | Kulkarni, Dipali
The aim of this study was to assess the environmental impact of socio-cultural practices on the water quality of River Ganga at the foothills of the Garhwal Himalayas in Uttarakhand State, India. The physico-chemical parameters that contributed to the temporal variation and pollution in the river were identified in this study. Principal component analysis (PCA) and Cluster analysis (CA) were used in the identification of anthropogenic factors (industrial, urban sewage, agricultural, land use and mining activities) and natural factors (soil erosion, weathering). The results of this study show that total coliform, fecal coliform, nitrate, sodium, phosphate, sulphate, TDS (Total dissolved solids), temperature, BOD (Biochemical oxygen demand), calcium and chloride are parameters significantly contributing to pollution load.
Mostrar más [+] Menos [-]Seasonal variability in water chemistry and sediment characteristics of intertidal zone at Karnafully estuary, Bangladesh
2016
Mallick, Debbrota | Islam, Md. | Talukder, Avijit | Mondal, Shamindra | Al-Imran, Md. | Biswas, Satchidananda
The Karnafully is one of the most important rivers due to its profound influence on water chemistry and sediment characteristics. The present study intended to assess the quality of water and sediment from intertidal zone of this river in respect to the pollution index. Seasonal water and sediment samples were collected during four seasons (Monsoon, post-monsoon, winter, and pre-monsoon) of 2014. The result indicates that these investigated parameters ranged as water temperature (21.7-36 °C), pH (8.0-8.7), salinity (2.4-8.8‰), total suspended solid (0.08-0.8 g/L), dissolve oxygen (0.00-4.52 mg/L), soil temperature (21.3-33 °C), pH (5.0-6.8), sand (4.13-44.10%), silt (39.93-75.89%), clay (11.98-21.19%), soil organic matter (4.33-6.21%), organic carbon (2.5-3.6%), nitrite-nitrogen (0.69-3.97 µg/L), and phosphate-phosphorus (0.23-3.44 µg/L). Multivariate statistical analyses like post-hoc LSD test, Cluster Analysis (CA), and Principal Component analysis (PCA) brought out the spatial and temporal changing pattern of water chemistry and sediment characteristics with the effect of uprising pollution. CA ascertained the compatibility among different parameters and categorized the monitoring sites into highly and moderately polluted areas. Moreover, PCA brought out five primary components and highlighted the three dormant factors, enormously regulating the river water chemistry such as municipal waste, carbon based nitrogenous compound, and local geomorphological weathering process. This investigation provided an outline on deterioration of water and sediment quality by high anthropogenic impact and suggests national policy maker to take some initiatives for retaining the quality water and sediment properties.
Mostrar más [+] Menos [-]Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer
2022
Sörengård, Mattias | Bergström, Sofia | McCleaf, Philip | Wiberg, Karin | Ahrens, Lutz
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g⁻¹ dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L⁻¹. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L⁻¹ (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L⁻¹ and 8 ng L⁻¹ (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
Mostrar más [+] Menos [-]Inhalation bioaccessibility of multi-class organic pollutants associated to atmospheric PM2.5: Correlation with PM2.5 properties and health risk assessment
2022
Sánchez-Piñero, Joel | Novo-Quiza, Natalia | Pernas-Castaño, Cristina | Moreda-Piñeiro, Jorge | Muniategui-Lorenzo, Soledad | López-Mahía, Purificación
Inhalation exposure to fine particulate matter (PM₂.₅) represents a global concern due to the adverse effects in human health. In the last years, scientific community has been adopted the assessment of the PM₂.₅-bound pollutant fraction that could be released (bioaccessible fraction) in simulated lung fluids (SLFs) to achieve a better understanding of PM risk assessment and toxicological studies. Thus, bioaccessibility of 49 organic pollutants, including 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 11 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols in PM₂.₅ samples was evaluated. The proposed method consists of a physiologically based extraction test (PBET) by using artificial lysosomal fluid (ALF) to obtain bioaccessible fractions, followed by a vortex-assisted liquid-liquid microextraction (VALLME) and a final analysis by programmed temperature vaporization-gas chromatography-tandem mass spectrometry (PTV-GC-MS/MS). The highest inhalation bioaccessibility ratio was found for bisphenol A (BPA) with an average of 83%, followed by OPFRs, PAEs and PAHs (with average bioaccessibilities of 68%, 41% and 34%, respectively). Correlations between PM₂.₅ composition (major ions, trace metals, equivalent black carbon (eBC) and UV-absorbing particulate matter (UVPM)) and bioaccessibility ratios were also assessed. Principal Component Analysis (PCA) suggested that PAHs, PAES and OPFRs bioaccessibility ratios could be positively correlated with PM₂.₅ carbonaceous content. Furthermore, both inverse and positive correlations on PAHs, PAEs and OPFRs bioaccessibilites could be accounted for some major ions and metal (oid)s associated to PM₂.₅, whereas no correlations comprising considered PM₂.₅ major ions and metal (oid)s contents and BPA bioaccessibility was observed. In addition, health risk assessment of target PM₂.₅-associated PAHs via inhalation was assessed in the study area considering both total and bioaccessible concentrations, being averaged human health risks within the safe carcinogenic and non-carcinogenic levels.
Mostrar más [+] Menos [-]Concentrations, homolog profiles, and risk assessment of short- and medium-chain chlorinated paraffins in soil around factories in a non-ferrous metal recycling park
2022
Weng, Jiyuan | Zhang, Peixuan | Gao, Lirong | Zhu, Shuai | Liu, Yang | Qiao, Lin | Zhao, Bin | Liu, Yin | Xu, Ming | Zheng, Minghui
Chlorinated paraffins (CPs) are used as additives in metal processing in the metal smelting industry. Data on CPs in the environment near metal smelting plants are limited. The objectives of this study were to investigate the concentrations and congener profiles of CPs in soil around factories in a non-ferrous metal recycling park located in Hebei, China, and to investigate human exposure to CPs in the soil. The concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were determined by two-dimensional gas chromatography with electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 121–5159 ng/g and 47–6079 ng/g, respectively. Generally, the CP concentrations in soils around the factories were relatively high compared with those near other contaminated sites and in rural and urban areas. There were significant correlations between the MCCP concentrations, some SCCP carbon homologs, and the total organic carbon content (p < 0.05). The major SCCP and MCCP congener groups were C₁₀Cl₆–₇ and C₁₅–₁₆Cl₅, respectively. Hierarchical cluster analysis and principal component analysis indicated that SCCPs and MCCPs in the soil might originate from extreme pressure additives containing CP-42 and CP-52 and CP-containing waste material from the factories. The concentrations in two samples collected near a metal recycling factory posed a moderate risk according to a risk assessment conducted using risk quotients. Further risk assessment showed that the CPs concentrations in soil did not pose significant health risks to either children or adults.
Mostrar más [+] Menos [-]Risk assessment and driving factors of trace metal(loid)s in soils of China
2022
Sun, Jiaxun | Zhao, Menglu | Cai, Boya | Song, Xiaoyong | Tang, Rui | Huang, Xinmiao | Huang, Honghui | Huang, Jian | Fan, Zhengqiu
Recently, with the rapid development of China's economy, the pollution of trace metal(loid)s (TMs) in soils has become increasingly severe and attracted widespread attention. Based on 1,402 published papers from 2000 to 2021, this study aimed to analyze the pollution intensity, ecological risk and driving factors for eight TMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in Chinese soils. Results showed that the average concentrations of eight TMs in Chinese soils all exceeded background values, and the pollution of Cd and Hg was the most serious. Based on Principal component analysis of pollution intensity and ecological risk, the priority control TMs were identified for the heavily polluted provinces. The results of Geo-detector model suggested that Urban development factors contributed most to the TM accumulation in Chinese soils. Further, spatial analysis using bivariate Moran's I indicated that industrial activities contributed most to soil TM accumulation in the middle and lower reaches of the Yangtze River, while soil TM pollution in the southwest and northwest provinces was mainly caused by mining and metal smelting. This study investigated the relationship between soil TM pollution and anthropogenic activities, thus providing a scientific basis for controlling soil TM pollution at a large-scale level.
Mostrar más [+] Menos [-]Assessment of currently used organochlorine pesticides in surface water and sediments in Xiangjiang river, a drinking water source in China: Occurrence and distribution characteristics under flood events
2022
Zhang, Shengwei | Zhao, Wenyu | Yang, Chao | Li, Yanxia | Liu, Mengyue | Meng, Xiang−Zhou | Cai, Minghong
Xiangjiang (XJ) is a typical urban inland river that serves as a drinking water source, which may be affected by the currently used organochlorine pesticides (CUOCPs) originating from agricultural activities in the vicinity. On this basis, this study comprehensively explored the occurrence and distribution characteristics of CUOCPs in surface water and sediments under long-term precipitation and subsequent floods. Considering the low concentration of CUOCPs in water, a technique combining high-throughput organic analysis with high-volume solid phase extraction (High-throat/Hi-volume SPE) was introduced for effective analysis of CUCOPs. The results showed that the concentration of CUOCPs in the water and sediments of XJ ranged from 2.33 to 6.40 ng L⁻¹ (average of 3.93 ± 1.15 ng L⁻¹) and from 1.52 to 21.2 ng g⁻¹ (average of 6.60 ± 4.31 ng g⁻¹ dw), respectively. The distribution of CUOCPs in water was consistent throughout XJ, but that in sediments was not uniform, indicating a stronger impact of floods on water than on sediments. Water-sediment partition coefficients were generally >2 L g⁻¹, showing a tendency of CUOCP dominance in sediments. The results of principal component analysis and cluster analysis showed that the occurrence of CUOCPs is significantly affected by exogenous disturbance, which could be flood events; meanwhile, clusters of CUOCPs were found in both water and sediments in the source-limited middle reaches in urban areas. Redundancy analysis (RDA) showed that CUOCP occurrences were not positively correlated with nutrient elements (nitrogen and phosphorus), but related to pH and dissolved oxygen (DO), indicating complex sources.
Mostrar más [+] Menos [-]Nexus between potentially toxic elements’ accumulation and seasonal/anthropogenic influences on mangrove sediments and ecological risk in Sundarbans, Bangladesh: An approach from GIS, self-organizing map, conditional inference tree and random forest models
2022
Hossain Bhuiyan, Mohammad Amir | Chandra Karmaker, Shamal | Saha, Bidyut Baran
Mangroves play a vital role in protecting the coastal community from the climate change effect and in the restoration of the coastal ecosystem. This research has been designed to determine the spatial and seasonal changes of potentially toxic elements’ (PTEs) concentration in sediments and their potential source contribution among the different human-driven processes in Sundarbans, Bangladesh. Different pollution evaluation indices, random forest (RF) model, conditional inference tree (CIT), self-organizing map (SOM), geographical information system (GIS), and principal component analysis (PCA) were used for the interpretation of sources and risk assessment of PTEs. The mean concentration of PTEs both in winter and monsoon seasons has fallen below the threshold effect level but exceeded the rare effect level of marine sediments quality standards. Results showed that the PTEs were significantly enriched (EF > 1.00 < 70.00) in sediments, whereas the Cd enrichment (7.00% samples) was very alarming (EF = 60–70). Except for Zn and Cd, other PTEs were enriched in 30–60% samples. The highest geoaccumulation and contamination factors for Cd were observed in 46–72% of samples. The ecological risk (ER) factors showed similar results where Cd showed strong to very strong factors (ER = 110–2218) in 80% of samples. The CIT explained the natural/geogenic and anthropogenic sources of pollution, where the higher CIT values for Cd indicated industrial, aquaculture, and coal-based thermal powerplant. The RF model provided that shrimp firms, power plants, industry, and seaport were recognized as the influential sources for Zn, Pb, Cr, Cd, and As in sediments. Though Pb and As were found as the most significant pollutants, Cd was identified as a severe threat to ecology and public health. Based on CIT, RF, SOM and PCA the order of PTEs in mangroves sediment were:industrial/urban > aquaculture/shrimpfirm > powerplant > seaportoperation > tourism > geogenic/natural. The present study will help the policymakers for effective and sustainable management of the mangrove ecosystem.
Mostrar más [+] Menos [-]Multi-spectroscopic investigation of the molecular weight distribution and copper binding ability of dissolved organic matter in Dongping Lake, China
2022
Fan, Tuantuan | Yao, Xin | Ren, Haoyu | Ma, Feiyang | Liu, Li | Huo, Xiaojia | Lin, Tong | Zhu, Haiyan | Zhang, Yinghao
The properties and metal-binding abilities of dissolved organic matter (DOM) rely on its molecular weight (MW) structure. In this study, the spatial differences of DOM in compositions, MW structures, and binding mechanisms with copper (Cu²⁺) in Dongping Lake were investigated by applying excitation-emission matrix combining parallel factor analysis (EEM-PARAFAC), synchronous fluorescence (SF) spectra, two-dimensional correlation spectra (2D-COS), and Fourier transform infrared (FTIR) spectra. The EDOM for the entrance of the Dawen River and PDOM for the macrophyte-dominated region were divided from DOM of Dongping Lake based on hierarchical clustering analysis (HCA) and principal component analysis (PCA) and were size-fractioned into MW < 500 kDa and <100 kDa fractions. According to EEM-PARAFAC, Dongping Lake was dominated by tryptophan-like substances with MW < 500 kDa. The concentration of PDOM was higher than that of EDOM (p < 0.05). 2D-COS showed that protein-like components preceded humic-like components binding to Cu²⁺ regardless of sample type (215 nm > 285 nm > 310–360 nm). The Cu²⁺ binding capacity of DOM exhibited specific differences in space, components, and molecular weights. The humic-like component 1 (C1) and tryptophan-like component 4 (C4) of PDOM showed stronger binding abilities than those of EDOM. Endogenous tryptophan-like component 4 (C4) had a higher binding affinity for Cu²⁺ than humic-like components (logKₐ: C4 > C1 > C2) in PDOM irrespective of MW. Humic-like components with MW < 500 kDa displayed higher binding potentials for Cu²⁺. FTIR spectra showed that the main participants of DOM-Cu complexation included aromatic hydrocarbons, aliphatic groups, amide Ⅰ bands, and carboxyl functional groups. This study provides spatial-scale insights into the molecular weight structure of DOM in influencing the behavior, fate, and bioavailability of heavy metals in lakes.
Mostrar más [+] Menos [-]