Refinar búsqueda
Resultados 1-10 de 25
Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice
2021
Zhang, Shaozhi | Jiao, Zihao | Zhao, Xin | Sun, Mingzhu | Feng, Xizeng
Puberty is a critical period for growth and development. This period is sensitive to external stimuli, which ultimately affects the development of nerves and the formation of social behaviour. 17β-Trenbolone (17β-TBOH) is an endocrine disrupting chemicals (EDCs), which had been widely reported in aquatic vertebrates. But there is little known about the effects of 17β-TBOH on mammals, especially on adolescent neurodevelopment. In this study, we found that 17β-TBOH acute 1 h exposure can cause the activation of the dopamine circuit in pubertal male balb/c mice. At present, there is little known about the effects of puberty exposure of endocrine disruptors on these neurons/nerve pathways. Through a series of behavioural tests, exposure to 80 μgkg⁻¹ d⁻¹ of 17β-TBOH during adolescence increased the anxiety-like behaviour of mice and reduced the control of wheel-running behaviour and the response of social interaction behaviour. The results of TH immunofluorescence staining showed that exposure to 17β-TBOH reduced dopamine axon growth in the medial prefrontal cortex (mPFC). In addition, the results of real-time PCR showed that exposure to 17β-TBOH not only down-regulated the expression of dopamine axon development genes, but also affected the balance of excitatory/inhibitory signals in mPFC. In this research, we reveal the effects of 17β-TBOH exposure during adolescence on mammalian behaviour and neurodevelopment, and provide a reference for studying the origin of adolescent diseases.
Mostrar más [+] Menos [-]Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs
2020
Alarcón, Ramiro | Rivera, Oscar E. | Ingaramo, Paola I. | Tschopp, María V. | Dioguardi, Gisela H. | Milesi, Mercedes M. | Muñoz-de-Toro, Mónica | Luque, Enrique H.
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
Mostrar más [+] Menos [-]Effects of gestational Perfluorooctane Sulfonate exposure on the developments of fetal and adult Leydig cells in F1 males
2020
Studies have showed that some of the most common male reproductive disorders present in adult life might have a fetal origin. Perfluorooctane sulfonic (PFOS) is one of the major environmental pollutants that may affect the development of male reproductive system if exposed during fetal or pubertal periods. However, whether PFOS exposure during fetal period affects testicular functions in the adult is still unclear. Herein, we investigated the effects of a brief gestational exposure to PFOS on the development of adult Leydig- and Sertoli-cells in the male offspring. Eighteen pregnant Sprague-Dawley rats were randomly divided into three groups and each received 0, 1 or 5 mg/kg/day PFOS from gestational day 5–20. The testicular functions of F1 males were evaluated on day 1, 35 and 90 after birth. PFOS treatment significantly decreased serum testosterone levels of animals by all three ages examined. The expression level of multiple mRNAs and proteins of Leydig (Scarb1, Cyp11a1, Cyp17a1 and Hsd17b3) and Sertoli (Dhh and Sox9) cells were also down-regulated by day 1 and 90. PFOS exposure might also inhibit Leydig cell proliferation since the number of PCNA-positive Leydig cells were significantly reduced by postnatal day 35. Accompanied by changes in Leydig cell proliferation and differentiation, PFOS also significantly reduced phosphorylation of glycogen synthase kinase-3β while increased phosphorylation of β-catenin. In conclusion, gestational PFOS exposure may have significant long-term effects on adult testicular functions of the F1 offspring. Changes in Wnt signaling may play a role in the process.
Mostrar más [+] Menos [-]Regulation of lipid droplets via the PLCβ2-PKCα-ADRP pathway in granulosa cells exposed to cadmium
2020
In steroidogenic cells, steroids are synthesized de novo from cholesterol stored in lipid droplets (LDs). The size of LDs regulated by adipose differentiation-related protein (ADRP) is closely related to cholesterol ester hydrolysis. Many studies reported that cadmium (Cd) had dual effects on steroidogenesis in granulosa cells (GCs). However, the role of LD and its regulation in abnormal steroidogenesis caused by Cd exposure remain unknown. In current study, female rats were exposed to CdCl₂ during gestation and lactation, and influence of such exposure was investigated in ovarian GCs of female offspring. The size of LDs was found much smaller than normal in GCs; ADRP was down-regulated and hormone-sensitive lipase (HSL) phosphorylation was increased, followed by up-regulation of steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1); the expression of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2 (PLCβ2) and protein kinase C alpha type (PKCα) were both decreased accompanying the ADRP down-regulation. This series of events resulted in a high level of progesterone in serum. Similar results were demonstrated in GCs treated with 20 μM CdCl₂ for 24 h in vitro. The protein level of ADRP was decreased after gene silencing of PLCβ2/PKCα, and the knockdown of PLCβ2/PKCα/ADRP led to micro-sized LD formation. We found that Cd exposure down-regulated ADRP by inhibiting the PLCβ2-PKCα signaling pathway, reduced the size of LDs, and promoted HSL phosphorylation. StAR and CYP11A1 were both up-regulated following the hydrolysis of cholesterol ester, which led to a high production of progesterone. LD thereby is a target subcellular organelle for Cd to affect steroid hormone synthesis in ovarian GCs. These findings might help to uncover the mechanism of ovarian dysfunction and precocious puberty caused by Cd pollution.
Mostrar más [+] Menos [-]Lambda-cyhalothrin delays pubertal Leydig cell development in rats
2018
Li, Huitao | Fang, Yinghui | Ni, Chaobo | Chen, Xiuxiu | Mo, Jiaying | Lv, Yao | Chen, Yong | Chen, Xianwu | Lian, Qingquan | Ge, Ren-Shan
Lambda-cyhalothrin (LCT) is a widely used broad-spectrum pyrethroid insecticide and is expected to cause deleterious effects on the male reproductive system. However, the effects of LCT on Leydig cell development during puberty are unclear. The current study addressed these effects. Twenty-eight-day-old male Sprague Dawley rats orally received LCT (0, 0.25, 0.5 or 1 mg/kg body weight/day) for 30 days. The levels of serum testosterone, luteinizing hormone, and follicle-stimulating hormone, Leydig cell number, and its specific gene and protein expression were determined. LCT exposure lowered serum testosterone levels at doses of 0.5 and 1 mg/kg and luteinizing hormone levels at a dose of 1 mg/kg, but increased follicle-stimulating hormone levels at doses of 0.5 and 1 mg/kg. LCT lowered Star and Hsd3b1 mRNA or their protein levels at a dose of 1 mg/kg. Immature Leydig cells were purified from pubertal rats and treated with different concentrations of LCT for 24 h and medium androgen levels, Leydig cell mRNA and protein levels, the mitochondrial membrane potential (△Ψm), and the apoptotic rate of immature Leydig cells were investigated. LCT inhibited androgen production at 5 μM and downregulated Scarb1 at 0.05 μM, Hsd3b1 and Hsd11b1 at 0.5 μM, and Cyp11a1 at 5 μM. LCT also decreased △Ψm at 0.5 and 50 μM. In conclusion, LCT can influence the function of Leydig cells.
Mostrar más [+] Menos [-]Hormonal changes and folliculogenesis in female offspring of rats exposed to cadmium during gestation and lactation
2018
Li, Zhiliang | Li, Teng | Leng, Y. (Yang) | Chen, Shaomin | Liu, Qunxing | Feng, Jianfeng | Chen, Hongxia | Huang, Yadong | Zhang, Qihao
It has been suggested that the toxic effects of cadmium (Cd) may disrupt ovarian and uterine functions in adults. However, Cd exposure during gestation and lactation and its effects on the reproductive development in female offspring is still not clear, and the mechanisms underlying exposure toxicology remain mostly unexplored. To investigate how Cd exposure of female rats (F0) during gestation and lactation affects the reproductive development of their female offspring, we studied the steroidogenesis, folliculogenesis, puberty onset, and litter size of the first (F1) and second (F2) filial generations following F0 female rats which had been exposed to CdCl2. The mechanisms related to the early onset of puberty induced by such exposure in female offspring were explored. Maternal exposure to Cd dramatically increased the biosynthesis of steroid hormones in F1 female offspring by the activation of cAMP/PKA pathway and up-regulated expression of steroidogenesis related proteins such as StAR, CYP11A1, 3β-HSD and CYP19A1. The high levels of steroid hormones contributed to an early puberty onset, promoted the differentiation and maturation of follicles, and led to the proliferation of endometrium that resulted in a uterus weight gain. The increased number of antral follicles eventually caused a big litter size. Despite of being free from additional Cd exposure, the levels of CYP11A1 and CYP19A1 in the ovaries of F2 female rats were also high, which resulted in a high concentration of serum progesterone. These results suggested that hormonal changes induced by exposure to Cd in utero might have a lasting effect beyond the first generation. These findings may help to better understand the origin of female sexual dysfunction in the developmental stages in general.
Mostrar más [+] Menos [-]Association of pyrethroids exposure with onset of puberty in Chinese girls
2017
Ye, Xiaoqing | Pan, Wuye | Zhao, Yuehao | Zhao, Shilin | Zhu, Yimin | Liu, Weiping | Liu, Jing
Pyrethroids, a class of ubiquitous insecticides, have been considered as endocrine-disrupting chemicals (EDCs). Female animal studies suggested that early-life pyrethroids exposure might delay puberty onset. However, it remains unclear whether this association applies to human populations. A total of 305 girls at the ages of 9–15 years old were recruited in Hangzhou, China in this study. The concentration of the common metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), was analyzed in urine samples to reflect the exposure level of pyrethroids. The associations of 3-PBA with pubertal stages were evaluated using a multinomial logistic regression model. The geometric mean level of 3-PBA was 1.11 μg/L (1.42 μg/g for creatinine-adjusted concentration). There was a significant 45% reduction in odds of being in breast stage 3 (B3) per one-unit increase in the log-transformed 3-PBA levels [OR = 0.55 (95%CI: 0.31–0.98), p = 0.042]. A similar negative association was found between urinary 3-PBA levels with later onset by pubic hair stage 2 (P2) [OR = 0.56 (95%CI: 0.36–0.90), p = 0.015]. Similar negative association was also observed between urinary 3-PBA levels and pubertal onset indicated by menarche [OR = 0.51 (95%CI: 0.28–0.93), p = 0.029]. For the first time to our knowledge, this work reveals that pyrethroids exposure may increase the risk of delayed pubertal onset in girls.
Mostrar más [+] Menos [-]Pubertal Bisphenol A exposure increases adult rat serum testosterone by resetting pituitary homeostasis
2022
Chen, Dan | Zhao, Xingyi | Huang, Fu | Guan, Xiaoju | Tian, Jing | Ji, Minpeng | Wen, Xin | Shao, Jingjing | Xie, Jiajia | Wang, Jiexia | Chen, Haolin
Bisphenol A (BPA) is widely used by manufacturers and in consumer products. Its release in the environment may affect male reproductive function. In this study, we examined the effect of low dose (0.1 mg/kg BW), short term exposure during puberty (PD21-35) on adult rat male reproduction. The results indicated that such exposure reset growth hormone (GH) and follicular stimulating hormone (FSH) homeostasis and resulted in a significantly higher level of serum testosterone without affecting serum luteinizing hormone level. QPCR and Western blot results showed that BPA significantly up-regulated selective genes/proteins in the Leydig cell steroidogenic pathway, including steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A, and low-density lipoprotein receptor. RNA-Seq analysis of testicular RNAs showed that BPA significantly affected the gene profiles of multiple testicular interstitial populations without affecting germ cells. Also, GO- and KEGG-analysis suggested that IGF1-related PI3K/AKT signaling was activated, which was confirmed by the increased phosphorylation of IRS1, AKT1 and CREB. The results indicated that a low-dose, short-term BPA exposure during puberty affected the adult male rat pituitary (GH and FSH) and testis (testosterone) homeostasis.
Mostrar más [+] Menos [-]Prenatal exposure to mixtures of persistent endocrine disrupting chemicals and early menarche in a population-based cohort of British girls
2021
Marks, Kristin J. | Howards, Penelope P. | Smarr, Melissa M. | Flanders, W Dana | Northstone, Kate | Daniel, Johnni H. | Calafat, Antonia M. | Sjödin, Andreas | Marcus, Michele | Hartman, Terryl J.
Exposure to endocrine disrupting chemicals (EDCs) is ubiquitous. EDC exposure, especially during critical periods of development like the prenatal window, may interfere with the body’s endocrine system, which can affect growth and developmental outcomes such as puberty. Most studies have examined one EDC at a time in relation to disease; however, humans are exposed to many EDCs. By studying mixtures, the human experience can be more closely replicated. We investigated the association of prenatal exposure to persistent EDCs (poly- and perfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs)) as mixtures with early menarche among female offspring in a nested case-control study within the Avon Longitudinal Study of Parents and Children (ALSPAC) recruited in the United Kingdom in 1991–1992. Concentrations of 52 EDCs were quantified in maternal serum samples collected during pregnancy. Daughter’s age at menarche was ascertained through mailed questionnaires sent annually. We used repeated holdout weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) to examine the association between prenatal exposure to multiple EDCs and early menarche (<11.5 (n = 218) vs. ≥11.5 years (n = 230)) for each chemical class separately (PFAS, PCBs, and OCPs) and for all three classes combined. Models adjusted for maternal age at menarche, maternal education, parity, pre-pregnancy body mass index, maternal age, prenatal smoking, and gestational week at sample collection. Mixture models showed null associations between prenatal exposure to EDC mixtures and early menarche. Using WQS regression, the odds ratio for early menarche for a one-decile increase in chemical concentrations for all three classes combined was 0.89 (95% CI: 0.76, 1.05); using BKMR, the odds ratio when all exposures were at the 60th percentile compared to the median was 0.98 (95% CI: 0.91, 1.05). Results suggest the overall effect of prenatal exposure to persistent EDC mixtures is not associated with early menarche.
Mostrar más [+] Menos [-]n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats
2020
Maske, Priyanka | Dighe, Vikas | Mote, Chandrashekhar | Vanage, Geeta
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats.A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
Mostrar más [+] Menos [-]