Refinar búsqueda
Resultados 1-10 de 98
The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings
2022
Chen, Tao | Wen, Xiao–Cui | Zhang, Li–Juan | Tu, Shu–Cheng | Zhang, Jun–Hao | Sun, Ruo–Nan | Yan, Bo
Large quantities of lead/zinc (Pb/Zn) mine tailings were deposited at tailings impoundments without proper management, which have posed considerable risks to the local ecosystem and residents in mining areas worldwide. Therefore, the geochemical behaviors of potentially toxic elements (PTEs) in tailings were in–depth investigated in this study by a coupled use of batch kinetic tests, statistical analysis and mineralogical characterization. The results indicated that among these studied PTEs, Cd concentration fluctuated within a wide range of 0.83–6.91 mg/kg, and showed the highest spatial heterogeneity. The mean Cd concentrations generally increased with depth. Cd were mainly partitioned in the exchangeable and carbonate fractions. The release potential of PTEs from tailings was ranged as: Cd > Mn > Zn > Pb > As, Cd > Pb > Zn > Mn > As and Cd > Pb > Mn > Zn > As, respectively, under the assumed environmental scenarios, i.e. acid rain, vegetation restoration, human gastrointestinal digestion. The results from mineralogical characterization indicated that quartz, sericite, calcite and pyrite were typical minerals, cumulatively accounting for over 80% of the tailings. Sulfides (arsenopyrite, galena, and sphalerite), carbonates (calcite, dolomite, cerussite and kutnahorite), oxides (limonite) were identified as the most relevant PTEs–bearing phases, which significantly contributed to PTEs release from tailings. A combined result of statistical, geochemical and mineralogical approaches would be provided valuable information for the alteration characteristics and contaminant release of Pb/Zn mine tailings.
Mostrar más [+] Menos [-]Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles
2019
Wang, Ting | Huo, Lijuan | Li, Yifei | Qian, Tianwei | Zhao, Dongye
In this study, reactive pyrite (FeS2) particles were prepared through a modified hydrothermal method and tested for immobilization of Cr(VI) in contaminated soil and synthetic groundwater. The addition of a NaAc buffer in the synthetic process resulted in pyrite particles of greater specific surface area, more uniform size, and more crystalline structure. The particles can effectively immobilize Cr(VI) in both water and a model Chinese loess soil. Over 99.9% of Cr(VI) was rapidly removed from water at pH 6.0 (Initial Cr(VI) = 25 mg/L, FeS2 dosage = 0.48 g/L), and the removal remained high (>82%) even at pH 9.5. Both adsorption and reductive precipitation were found operative in the Cr(VI) immobilization, with ∼66% of Cr immobilized due to reduction. Fe(II) ions associated on the FeS2 surface played a key role in the reduction of Cr(VI) to Cr(III), and S22− also facilitated the reductive removal of Cr(VI). The presence of humic acid enhanced Cr(VI) removal at pH 4.0, but the effect was negligible at pH 6.0. Batch kinetic tests showed that treating a Cr(VI)-laden soil with 0.48 g/L (as Fe) of FeS2 decreased the equilibrium water-leachable Cr(VI) by >99.0% at pH 6.0 and by >70.0% at pH 9.0. The distribution coefficient (Kd) value of the pyrite-amended soil was 1477.8 at pH 6.0, which is 306 times higher than for the untreated soil. Column elution tests showed that installation of a 3-cm reactive layer of FeS2 in a soil column was able to capture the leachable Cr(VI) from the soil, and the retardation factor (Rd) for the 3-cm FeS2 layer sample was 381 times higher than that for the plain soil. The synthetic pyrite particles may serve as an reactive material for effective removal or immobilization of Cr(VI) in contaminated water or soil.
Mostrar más [+] Menos [-]Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings
2018
Liu, Yunjia | Wu, Songlin | Nguyen, Tuan A.H. | Southam, Gordon | Chan, Ting-Shan | Lu, Ying-Rui | Huang, Longbin
A massive and dense textured layer (ca. 35–50 cm thick) of hardpan was uncovered at the top layer, which capped the unweathered sulfidic Cu-Pb-Zn tailings in depth and physically supported gravelly soil root zones sustaining native vegetation for more than a decade. For the purpose of understanding functional roles of the hardpan layer in the cover profile, the present study has characterized the microstructures of the hardpan profile at different depth compared with the tailings underneath the hardpans. A suit of microspectroscopic technologies was deployed to examine the hardpan samples, including field emission-scanning electron microscopy coupled with energy dispersive spectroscopy (FE-SEM-EDS), X-ray diffraction (XRD) and synchrotron-based X-ray absorption fine structure spectroscopy (XAFS). The XRD and Fe K-edge XAFS analysis revealed that pyrite in the tailings had been largely oxidised, while goethite and ferrihydrite had extensively accumulated in the hardpan. The percentage of Fe-phyllosilicates (e.g., biotite and illite) decreased within the hardpan profile compared to the unweathered tailings beneath the hardpan. The FE-SEM-EDS analysis showed that the fine-grained Ca-sulfate (possibly gypsum) evaporites appeared as platelet-shaped that deposited around pyrite, dolomite, and crystalline gypsum particles, while Fe-Si gels exhibited a needle-like texture that aggregated minerals together and produced contiguous coating on pyrite surfaces. These microstructural findings suggest that the weathering of pyrite and Fe-phyllosilicates coupled with dolomite dissolution may have contributed to the formation of Ca-sulfate/gypsum evaporites and Fe-Si gels. These findings have among the first to uncover the microstructure of hardpan formed at the top layer of sulfidic Cu-Pb-Zn tailings, which physically capped the unweathered tailings in depth and supported root zones and native vegetation under semi-arid climatic conditions.
Mostrar más [+] Menos [-]Thallium dispersal and contamination in surface sediments from South China and its source identification
2016
Liu, Juan | Wang, Jin | Chen, Yongheng | Shen, Chuan-Chou | Jiang, Xiuyang | Xie, Xiaofan | Chen, Diyun | Lippold, Holger | Wang, Chunlin
Thallium (Tl) is a non-essential element in humans and it is considered to be highly toxic. In this study, the contents, sources, and dispersal of Tl were investigated in surface sediments from a riverine system (the western Pearl River Basin, China), whose catchment has been contaminated by mining and roasting of Tl-bearing pyrite ores. The isotopic composition of Pb and total contents of Tl and other relevant metals (Pb, Zn, Cd, Co, and Ni) were measured in the pyrite ores, mining and roasting wastes, and the river sediments. Widespread contamination of Tl was observed in the sediments across the river, with the highest concentration of Tl (17.3 mg/kg) measured 4 km downstream from the pyrite industrial site. Application of a modified Institute for Reference Materials and Measurement (IRMM) sequential extraction scheme in representative sediments unveiled that 60–90% of Tl and Pb were present in the residual fraction of the sediments. The sediments contained generally lower 206Pb/207Pb and higher 208Pb/206Pb ratios compared with the natural Pb isotope signature (1.2008 and 2.0766 for 206Pb/207Pb and 208Pb/206Pb, respectively). These results suggested that a significant fraction of non-indigenous Pb could be attributed to the mining and roasting activities of pyrite ores, with low 206Pb/207Pb (1.1539) and high 208Pb/206Pb (2.1263). Results also showed that approximately 6–88% of Tl contamination in the sediments originated from the pyrite mining and roasting activities. This study highlights that Pb isotopic compositions could be used for quantitatively fingerprinting the sources of Tl contamination in sediments.
Mostrar más [+] Menos [-]Integrating 3D geological modeling and kinetic modeling to alleviate acid mine drainage through upstream mine waste classification
2022
Toubri, Youssef | Demers, Isabelle | Beier, Nicholas
Mine waste classification preceding mining constitutes a proactive solution to classify and segregate mine waste into geo-environmental domains based upon the magnitude of their environmental risks. However, upstream classification requires multi-disciplinary and integrated approaches. This study integrates geological modeling and kinetic modeling to inform upstream mine waste classification based on the pH generated from the main acid-generating and acid-neutralizing reactions once the mine solid waste is stored in oxidizing conditions. Geological models were used to depict the ante-mining spatial distribution of the main reactive minerals: pyrite, albite and calcite. Subsequently, the corresponding block models were created. The dimension of the elementary voxels for each block model was set at 40х40х40 m for this study. The kinetic modeling approach was performed using PHREEQC and VS2DRTI to consider unsaturated conditions. The kinetic modeling simulated a 1D column for each voxel. The column simulates the excavated state of the hosting rock involving kinetic reactions and unsaturated flow under highly oxidizing conditions. Subsequently, the resulting pH for different intervals of time was assigned to its respective voxel. The outcome consists of a spatio-temporal visualization of the pH defining ante-mining geo-environmental domains, thereby providing the opportunity for formulating proactive management measures regarding the hazardous geo-environmental domains.
Mostrar más [+] Menos [-]Isotope evidence for temporal and spatial variations of anthropogenic sulfate input in the Yihe River during the last decade
2022
Duan, Hui-zhen | Zhang, Dong | Zhao, Zhi-qi | Jiang, Hao | Zhang, Cong | Huang, Xing-yu | Ma, Bing-juan | Guo, Qing-jun
Pyrite oxidation and sedimentary sulfate dissolution are the primary components of riverine sulfate (SO₄²⁻) and are predominant in global SO₄²⁻ flux into the ocean. However, the proportions of anthropogenic SO₄²⁻ inputs have been unclear, and their tempo-spatial variations due to human activities have been unknown. Thus, field work was conducted in a spatially heterogeneous human-affected area of the Yihe River Basin (YRB) during a wet year (2010) and drought years (2017/2018). Dual sulfate isotopes (δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻) and Bayesian isotope mixing models were used to calculate the variable anthropogenic SO₄²⁻ inputs and elucidate their temporal impacts on riverine SO₄²⁻ flux. The results of the mixing models indicated acid mine drainage (AMD) contributions increased from 56.1% to 83.1% of upstream sulfate and slightly decreased from 46.3% to 44.0% of midstream sulfate in 2010 and 2017/2018, respectively, in the Yihe River Basin. The higher upstream contribution was due to extensive metal-sulfide-bearing mine drainage. Sewage-derived SO₄²⁻ and fertilizer-derived SO₄²⁻ inputs in the lower reaches had dramatically altered SO₄²⁻ concentrations and δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻ values. Due to climate change, the water flow discharge decreased by about 70% between 2010 and 2017/2018, but the riverine sulfate flux was reduced by only about 58%. The non-proportional increases in anthropogenic sulfate inputs led to decreases in the flow-weighted average values of δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻ from 10.3‰ to 9.9‰ and from 6.1‰ to 4.4‰, respectively. These outcomes confirm that anthropogenic SO₄²⁻ inputs from acid mine drainage (AMD) have increased, but sewage effluents SO₄²⁻ inputs have decreased.
Mostrar más [+] Menos [-]Transformation of sulfidized nanoscale zero-valent iron particles and its effects on microbial communities in soil ecosystems
2022
Hui, Cai | Liu, Bing | Du, Linna | Xu, Ligen | Zhao, Yuhua | Shen, Dongsheng | Long, Yuyang
Sulfidized nanoscale zero-valent iron (S-nZVI) is a promising material for in situ soil remediation. However, its transformation (i.e., aging) and effects on the microbial community in soil ecosystems are largely unknown. In this study, S-nZVI having low (S-nZVI (L)) and high sulfur-doping (S-nZVI (H)) were incubated in soil microcosms and bare nZVI was used as a control. Their aged products were characterized using microspectroscopic analyses and the changes in the corresponding soil microbial community were determined using high-throughput sequencing analyses. The results indicate that severe corrosion of both bare and S-nZVI occurred over 56 days of aging with significant morphological and mineral changes. Magnetite, lepidocrocite, and goethite were detected as the main aged products. In addition, sulfate ions, pyrite, and iron polysulfide were formed in the aged products of S-nZVI. Cr(VI) removal test results indicated that S-nZVI(L) achieved the best results after aging, likely because of the optimal FeS arrangement on its nanoparticle surfaces. The presence of nZVI and S-nZVI increased the abundance of some magnetotactic microorganisms and altered bacterial and fungal community structures and compositions. Moreover, the addition of S-nZVI enriched some bacterial and fungal genera related to sulfur cycling because of the presence of sulfide-bearing material. The findings reveal the transformation of S-nZVI during aging and its effects on microbial communities in soil ecosystems, thereby helping to the evaluation of S-nZVI application in soil remediation.
Mostrar más [+] Menos [-]Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil
2021
Min, Xiaobo | Li, Qi | Zhang, Xiaoming | Liu, Lu | Xie, Yan | Guo, Lili | Liao, Qi | Yang, Zhihui | Yang, Weichun
Development of efficient, green and low-cost natural mineral-based reductive materials is promising to remediation of hexavalent chromium(Cr(VI))-contaminated soil. Considering the synergetic effect between pyrite and zerovalent iron (ZVI), an activated pyrite supported ZVI(ZVI/FeS₂) with high reducing activity was developed by ball milling activation of natural pyrite and sulfidation of ZVI. The remediation property of ZVI/FeS₂ for Cr(VI)-contaminated soil was evaluated with different ZVI/FeS₂ dosage, soil-water ratio, initial pH, time and temperature, as well as the stability of Cr. The results showed that ZVI/FeS₂ possessed high reduction activity with soil Cr(VI) removal rate up to 99 % even under alkaline condition, and soil with different pH values eventually converged to neutral after 90 days, indicating that ZVI/FeS₂ has a good self-regulating alkaline ability. The reduction process conformed to Langmuir-Hinshelwood first-order kinetics and was a spontaneous and endothermic process. The lower activation energy of 17.97 kJ mol⁻¹ (usually 60–250 kJ mol⁻¹) indicated that the reduction reaction of Cr(VI) was particularly easy to occur. The speciation change of Cr in soil within 30 days demonstrated that the Cr in the soil was converted from a readily migratable state to a more stable state, where the Fe–Mn oxide bound fraction reached 85.03 % due to the generation of Cr(III)/Fe(III) co-precipitation. The results of long-term stability experiments showed that the leaching concentrations of Cr(VI) and total Cr decreased significantly after the ZVI/FeS₂ treatment and remained stable at very low levels for 180 days. This study provided a sustainable way to fully utilize natural pyrite minerals to obtain iron-bearing reductive materials for feasible, effective and long-term stable immobilization of Cr(VI) in soil.
Mostrar más [+] Menos [-]FeS2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model
2021
Cui, Tingyu | Xiao, Zhihui | Wang, Zhenbei | Liu, Chao | Song, Zilong | Wang, Yiping | Zhang, Yuting | Li, Ruoyu | Xu, Bingbing | Qi, Fei | Ikhlaq, Amir
Carbamazepine (CBZ) decay by electro-Fenton (EF) oxidation using a novel FeS₂/carbon felt (CF) cathode, instead of a soluble iron salt, was studied with the aim to accelerate the reaction between H₂O₂ and ferrous ions, which helps to produce more hydroxyl radicals (•OH) and eliminate iron sludge. First, fabricated FeS₂ and its derived cathode were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Anodes were then screened, with DSA (Ti/IrO₂–RuO₂) showing the best performance under EF oxidation regarding CBZ degradation and electrochemical characterization. Several operating parameters of this EF process, such as FeS₂ loading, current density, gap between electrodes (GBE), initial [CBZ], and electrolyte type, were also investigated. Accordingly, a nonconsecutive empirical kinetic model was established to predict changes in CBZ concentration under the given operational parameters. The contribution of different oxidation types to the EF process was calculated using kinetic analysis and quenching experiments to verify the role of the FeS₂-modified cathode. The reaction contributions of anodic oxidation (AO), H₂O₂ electrolysis (EP), and EF oxidation to CBZ removal were 12.81%, 7.41%, and 79.77%, respectively. The •OH exposure of EP and EF oxidation was calculated, confirming that •OH exposure was approximately 22.45-fold higher using FeS₂-modified CF. Finally, the 19 intermediates formed by CBZ degradation were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Accordingly, four CBZ degradation pathways were proposed. ECOSAR software was used to assess the ecotoxicity of intermediates toward fish, daphnia, and green algae, showing that this novel EF oxidation process showed good toxicity reduction performance. A prolonged EF retention time was proposed to be necessary to obtain clean and safe water, even if the targeted compound was removed at an earlier time.
Mostrar más [+] Menos [-]Feathers and hair as tools for non-destructive pollution exposure assessment in a mining site of the Iberian Pyrite Belt
2020
Gil-Jiménez, Esperanza | Mateo, Rafael | de Lucas, Manuela | Ferrer, Miguel
Mining is responsible of releasing trace elements to the environment with potential negative effects on wildlife. Traditionally, wildlife exposure assessment has been developed by analyzing mainly environmental compartments or internal tissues. Nowadays, the use of non-destructive matrices such as hair or feathers has increased. Nevertheless, its use in free-living terrestrial mammals or in birds other than raptors or passerines is less frequent. The main objective of our study was to determine the potential for hair and feathers in a rabbit and bird species to be used as non-invasive proxy tissues for assessing internal metal concentrations at polluted sites from mining. We tested whether hair of European rabbit (Oryctolagus cuniculus) and feathers of red-legged partridge (Alectoris rufa) can be used as non-destructive biological monitoring tools of both essential (Cu, Zn) and non-essential (Pb, Cd, As) trace elements in a currently active copper mining site. We found significant different concentrations, particularly in non-essential elements, between reference area and mining site. Non-essential elements Pb and Cd showed higher correlations between tissues and hair/feathers, while few significant patterns were observed for essential elements such as Cu and Zn. Although feathers showed lower levels of correlation with internal tissues than hair, both could be useful as non-destructive biological monitoring tools. Further tissues, and more importantly, hair and feathers allowed discrimination between polluted and reference sites to indicate bioavailability and pollution status. In addition, hair and feathers can be used in monitoring pollution of an active mining site, being specially interesting for biomonitoring a certain period of time in the event of a particular episode of pollution, in addition to the chronic exposure. As occurred with hair in rabbits, feathers seem to be a good compartment to detect differences between a potential polluted area, such the surrounding of an active mine site, and a non-polluted area.
Mostrar más [+] Menos [-]