Refinar búsqueda
Resultados 1-10 de 22
Immobilization of mercury by pyrite (FeS2) Texto completo
2008
Bower, Julia | Savage, Kaye S. | Weinman, Beth | Barnett, Mark O. | Hamilton, William P. | Harper, Willie F.
Elemental mercury (Hg0) is a metal with a number of atypical properties, which has resulted in its use in myriad anthropogenic processes. However, these same properties have also led to severe local subsurface contamination at many places where it has been used. As such, we studied the influence of various parameters on Hg(II) sorption onto pyrite (pH, time, Hg(II) concentration), a potential subsurface reactive barrier. Batch sorption studies revealed that total Hg(II) removal increases with both pH and time. X-ray absorption spectroscopy analysis showed that a transformation in the coordination environment at low pH occurred during aging over 2 weeks, to form an ordered monolayer of monodentate Hg–Cl complexes on pyrite. In column studies packed with pure quartz sand, the transport of Hg(II) was significantly retarded by the presence of a thin pyrite-sand reactive barrier, although dissolved oxygen inhibited Hg(II) sorption onto pyrite in the column. Pyrite may be an effective subsurface reactive barrier for Hg in groundwater.
Mostrar más [+] Menos [-]Temporal and Spatial Monitoring of the pH and Heavy Metals in a Soil Polluted by Mine Spill. Post Cleaning Effects Texto completo
2007
Ordóñez Fernandez, R. | Giráldez Cervera, J.V. | Vanderlinden, K. | Carbonell Bojollo, R. | González Fernández, P.
The bursting of the mining dam of Aznalcollar (Seville, Spain) triggered an increase in the concentration of heavy metals in the soils of the river Guadiamar valley as a result of the leaching of the pyritic sludge deposited on them. After the cleaning operations which included, as well as mechanical clearing, the addition of different amendments, some areas with residual sludge remained, from which some heavy metals are being mobilized by the cyclical recharge and discharge processes of water in the profiles. This paper analyzes the effect of the soil recovery operations and the climatology on the concentration of metals and their distribution in the soil profile in an area affected by the toxic spill. Fourteen points have been selected in a plot in which acidity persists, there is no vegetation, and residual sludge stains can be seen at a glance. The temporal and spatial evolution of the extractable metals: Fe, Cu, Mn and Zn, the pH and the oxidable fraction has been measured in-depth. The results obtained up to now indicate a leaching of the pollutant towards deeper horizons, finding, at a depth of 757 cm, pH values of 3.5 and very high Fe and Mn concentrations available, especially in the profiles with large sized pores, with a big fraction of sand. On the surface, seasonally, there are low pH values of around 2.5 and extractable Fe contents of over 4000 ppm, which might have an influence on the quality of surface runoff or underground water.
Mostrar más [+] Menos [-]Pyrite depression by reduction of solution oxidation potential
1970
Quantification of Heavy Metals from A.M.D. Discharged into a Public Water Supply Dam in the Iberian Pyrite Belt (SW Spain) Using Centered Moving Average Texto completo
2010
Grande, Jose Antonio | Jimenez, Antonio | Romero, Sixto | de la Torre, María Luisa | Gómez-Olivera, Tamara
In this work, the determination of moving averages is proposed as a method for quantifying metal, arsenic, and sulfate discharges into a water course undergoing acid mine drainage processes which flows into a public water supply dam in the Iberian Pyrite Belt. The analysis of the results obtained by applying moving averages shows that the highest metal and sulfate concentrations occur in October, coinciding with the first rainfall and the sponging of mine dumps, with November and December being the months when the highest contributions to the Andevalo Dam take place. The discharge of acid mine waters with its corresponding metal load into the Andevalo Dam means, for a single hydrological year, more than 6,000 t of sulfates, almost 600 t of iron, and 1 t of As, of special relevance for the hydrochemical quality of the stored waters. When they arrive at the dam, these metals precipitate, since the water pH is near 7, and remain latent in the bottom sediment as long as the chemical makeup of the dam water does not change.
Mostrar más [+] Menos [-]Distribution of As and Zn in Soils Affected by the Spill of a Pyrite Mine and Effectiveness of the Remediation Measures Texto completo
2009
Simón, M. | Díez, M. | García, I. | Martin, F.
The concentrations of As and Zn in 100 georeferenced soils uniformly distributed throughout the area affected by the spill from the Aznalcóllar mine (April 1998) were analysed at three depths (0-10, 10-30, and 30-50 cm) and on four dates (autumn-winter 1998, 1999, 2001, and 2004). For an estimate of the geochemical background, 30 unaffected soils near the edge of the spill were also analysed at the same depths. The soils were contaminated before the spill and, the accident seriously increased the concentration of As and Zn in the first 10 cm of almost all the affected soils. After the enormous efforts of cleaning up the tailings, around 45% of the soils had a concentration higher than 100 mg As kg⁻¹ dry soil, and some 35% had a concentration higher than 1,000 mg Zn kg⁻¹ dry soil. Both As and Zn penetrated between 10 and 30 cm in 25% and 45% of the soils, respectively, but reached 30 cm in only 12% of the soils. The remediation actions, especially the tilling and homogenisation of the uppermost 25 cm of the all soils, caused the As and Zn concentrations to decline in the soils, but this change was not very effective from the standpoint of pollution. Thus, 6 years after the spill, the uppermost 10 cm of 30% of the soils continued to have an As concentration higher than 100 mg As kg⁻¹, while the Zn concentration diminished considerably on the surface due to its greater mobility, accumulating between 10 and 30 cm in depth, where 20% of the soils continued to register more than 1,000 mg Zn kg⁻¹ dry soil.
Mostrar más [+] Menos [-]Assessment of the Critical Load of Trace Elements in Soils Polluted by Pyrite tailings. A Laboratory Experiment Texto completo
2009
Díez, M. | Simón, M. | García, I. | Martin, F.
Nineteen soil samples (SE Spain) with very different chemical physical properties and developed over different parent materials were contaminated by adding increments of an acidic solution from oxidised pyrite tailings. The quantities of Cu, Zn, Cd and Pb precipitated by the soil samples were directly and significantly related to the pH-buffering capacity. However, when the contamination caused the pH to fall below 3.0 the soil tended to release a fraction of the element adsorbed, which increased as the pH decreased. The quantity of each precipitated element at which the action value for each element is reached, was also directly related to the pH-buffering capacity. Nevertheless, in carbonate-rich soils, the precipitated Cu and Zn maintained a relatively high level of bioavailability, while Cd reached a critical level with a content exceeding 25 mg kg⁻¹, regardless of the pH-buffering capacity.
Mostrar más [+] Menos [-]The Role of Iron Bacteria on Weathering and Attenuation Processes at Acidic Environments Texto completo
2009
García-Balboa, C. | Blázquez, M. L. | González, F. | Muñoz, J. A. | Ballester, A.
The present research reproduces the chemical and microbiological reactions that occur naturally when a metal sulfide is discharged onto a natural soil, with special emphasis on iron cycle. The role of indigenous microbiota from an extremely acidic site on both weathering and attenuation processes related to the iron mobilization has been studied and the iron cycle has been reproduced at laboratory scale. In the first stage, the weathering phase, a residual sulfide mineral was bioleached using a mixed culture of iron-oxidizing bacteria isolated from the own substrate. The acid liquor obtained (pH 2), with a high metal concentration (160 mM in total iron), was filtered and neutralized. Solids obtained from the two sources (from the weathering process and after the neutralization stage) were characterized by X-ray and scanning electron microscope/energy dispersive X-ray spectroscopy, resulting ferric iron precipitates such as jarosites, goethites, and ferrihydrites with different crystalline properties. The contribution of ferric iron-reducing bacteria on the attenuation of high-content iron effluents was also studied. Mixed cultures of ferric iron-reducing bacteria, isolated from those acidic substrates, were active in reducing soluble ferric iron (60 mM in concentration), and a 66% of bioreduction was reached after 15 days. Dissimilatory ferric iron reduction has been achieved with adapted cultures at pH values from 7 to 4.
Mostrar más [+] Menos [-]Oxidation of Azo Dyes by H₂O ₂ in Presence of Natural Pyrite Texto completo
2013
Wu, Deli | Feng, Yong | Ma, Luming
Pyrite, FeS₂, is the most common sulfide mineral. The aim of this work was to assess the oxidative ability of H₂O₂ in presence of natural pyrite by employing reactive black 5, acid red GR, and cationic red X-GRL as model pollutants. The effects of H₂O₂ dosage, pyrite loading, and initial pH on reaction were investigated. The results reveal that natural pyrite-promoted H₂O₂ has a great activity in the decoloration of azo dyes. About 85 % of reactive black 5 and acid red GR can be removed within 10 min when 0.3 mM H₂O₂ and 0.3 g/L pyrite are used with initial pH values ranging from 6.32 to 6.96. The discoloration efficiencies are demonstrated to be less sensitive to the initial solution pH value. Approximately 90 % of discoloration for reactive black 5 and acid red GR can be achieved when initial pH value ranges from 2 to 10. Ion leaching experiments show that high levels of ferrous iron and sulfate can be detected when natural pyrite is added to dye solution alone. To gain an understanding of the reaction mechanism and the role of natural pyrite takes in these processes, techniques including scanning electron microscope, X-ray diffraction, and X-ray photoelectron were employed to characterize the solid sample and ion leaching experiments were also carried out. Results indicate that the determined high levels of ions have resulted from the dissolution of FeSO₄·H₂O formed on the surface of pyrite and the homogeneous Fenton reaction initiated by ferrous iron in presence of H₂O₂ is mainly responsible for the observed fast color removal rate.
Mostrar más [+] Menos [-]Prolonged Testing of Metal Mobility in Mining-Impacted Soils Amended with Phosphate Fertilisers Texto completo
2012
Munksgaard, Niels C. | Lottermoser, Bernd G. | Wyrtzen, Don
The aim of the study was to determine whether the application of superphosphate fertiliser to soils contaminated with mine wastes can inhibit metal and metalloid mobility (Cu, Pb, Zn, Cd, Fe, Mn, As, Sb) in the long term. Contaminated soils contained sulfide- and sulfate-rich waste materials from the Broken Hill and Mt Isa mining centres. Results of long-term (10 months) column experiments demonstrate that fertiliser amendment had highly variable effects on the degree of metal and metalloid mobilisation and capture. Rapid release of metals from a sulfate-rich soil showed that phosphate amendment was ineffective in stabilising highly soluble metal-bearing phases. In a sulfide-rich soil with abundant organic matter, complexing of metals with soluble organic acids led to pronounced metal (mainly Cd, Cu and Zn) release from fertiliser-amended soils. The abundance of pyrite, as well as the addition of fertiliser, caused persistent acid production over time, which prevented the formation of insoluble metal phosphate phases and instead fostered an increased mobility of both metals and metalloids (As, Cd, Cu, Sb, Zn). By contrast, fertiliser application to a sulfide-rich soil with low organic carbon content and a sufficient acid buffering capacity to maintain near-neutral pH resulted in the immobilisation of Pb in the form of newly precipitated Pb phosphate phases. Thus, phosphate stabilisation was ineffective in suppressing metal and metalloid mobility from soils that were rich in organic matter, contained abundant pyrite and had a low acid buffering capacity. Phosphate stabilisation appears to be more effective for the in situ treatment of sulfide-rich soils that are distinctly enriched in Pb and contain insignificant concentrations of organic matter and other metals and metalloids.
Mostrar más [+] Menos [-]Ecotoxicological Assessment of Contaminated River Sites as a Proxy for the Water Framework Directive: an Acid Mine Drainage Case Study Texto completo
2012
Vidal, Tânia | Pereira, Joana Luísa | Abrantes, Nelson | Soares, Amadeu M. V. M. | Gonçalves, Fernando
Metal contamination of freshwater bodies resulting from mining activities or deactivated mines is a common problem worldwide such as in Portugal. Braçal (galena ore) and Palhal (pyrrhotite, chalcopyrite, galena, sphalerite, and pyrite ore), located in a riverside position, are both examples of deactivated mining areas lacking implemented recovery plans since their shutdown in the early mid-1900s. In both mining areas, effluents still flow into two rivers. The purpose of this work was to evaluate the potential hazard posed by the mining effluents to freshwater communities. Therefore, short- and long-term ecotoxicological tests were performed on elutriates from river sediments collected at each site using standard test organisms that cover different functional levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Lemna minor, and Daphnia sp.). The results show that elutriates from the sediments of Palhal were very toxic to all tested species, while in contrast, elutriates from Braçal showed generally no toxicity for the tested species. Our study highlights the usefulness of using an ecotoxicological approach to help in the prioritization/scoring of the most critical areas impacted by deactivated mines. This ecotoxicological test battery can provide important information about the ecological status of each concerning site before investing in the application of time-consuming and costly methods defined by the Water Framework Directive or can stand as a meaningful complementary analysis.
Mostrar más [+] Menos [-]