Refinar búsqueda
Resultados 1-10 de 167
The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system
2022
Rodríguez–Villegas, Camilo | Díaz, Patricio A. | Salgado, Pablo | Tomasetti, Stephen J. | Díaz, Manuel | Marín, Sandra L. | Baldrich, Ángela M. | Niklitschek, Edwin | Pino, Loreto | Matamala, Thamara | Espinoza, Katherine | Figueroa, Rosa I.
Harmful algal blooms (HABs) are recurrent in the NW Patagonia fjords system and their frequency has increased over the last few decades. Outbreaks of HAB species such as Alexandrium catenella, a causal agent of paralytic shellfish poisoning, and Protoceratium reticulatum, a yessotoxins producer, have raised considerable concern due to their adverse socioeconomic consequences. Monitoring programs have mainly focused on their planktonic stages, but since these species produce benthic resting cysts, the factors influencing cyst distributions are increasingly gaining recognition as potentially important to HAB recurrence in some regions. Still, a holistic understanding of the physico-chemical conditions influencing cyst distribution in this region is lacking, especially as it relates to seasonal changes in drivers of cyst distributions, as the characteristics that favor cyst preservation in the sediment may change through the seasons. In this study, we analyzed the physico–chemical properties of the sediment (temperature, pH, redox potential) and measured the bottom dissolved oxygen levels in a “hotspot” area of southern Chile, sampling during the spring and summer as well as the fall and winter, to determine the role these factors may play as modulators of dinoflagellate cyst distribution, and specifically for the cysts of A. catenella and P. reticulatum. A permutational analysis of variance (PERMANOVA) showed the significant effect of sediment redox conditions in explaining the differences in the cyst assemblages between spring-summer and fall-winter periods (seasonality). In a generalized linear model (GLM), sediment redox potential and pH were associated with the highest abundances of A. catenella resting cysts in the spring-summer, however it was sediment temperature that most explained the distribution of A. catenella in the fall-winter. For P. reticulatum, only spring-summer sediment redox potential and temperature explained the variation in cyst abundances. The implications of environmental (physico-chemical) seasonality for the resting cysts dynamics of both species are discussed.
Mostrar más [+] Menos [-]Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies
2021
Growing applications of nanoagrichemicals have resulted in their increasing accumulation in agricultural soils, which could modify soil properties and affect soil health. A greenhouse pot trial was conducted to determine the effects of three metallic nanoagrichemicals on several fundamental chemical properties of a rice paddy soil, including zinc oxide nanoparticles (ZnO NPs) and copper oxide nanoparticles (CuO NPs) at 100 mg/kg, and silicon oxide nanoparticles (SiO₂ NPs) at 500 mg/kg, as well as their bulk and ionic counterparts. The investigated soil amendments displayed significant and distinctive impact on the examined soil chemical properties relevant to agricultural production, including soil pH, redox potential, soil organic carbon (SOC), cation exchange capacity (CEC), and plant available As. For example, all amendments increased the bulk soil pH at day 47 to some extent, but the increase was substantially higher for SiO₃²⁻ (37.7%) than other amendments (5.8%–13.7%). Soil Eh was elevated markedly at day 47 after the addition of soil amendments in both the bulk soil (45.9%–74.4%) and rice rhizosphere soil (20.3%–68.9%). CuO NPs and Cu²⁺ generally exhibited greater impact on soil chemical properties than other agrichemicals. Significantly different responses to soil amendments were observed between bulk and rhizosphere soils, suggesting the essential role of plants in affecting soil properties and their responses to environmental disturbance. Overall, our results confirmed that the tested amendments could have remarkable impacts on the fundamental chemical properties of rice paddy soils.
Mostrar más [+] Menos [-]Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf
2019
Liu, Ming | Chen, Jingbo | Sun, Xueshi | Hu, Zhizhou | Fan, Dejiang
The concentration and speciation of heavy metals (Cu, Co, Ni, Zn, Cr, Pb and Cd) were studied in surface sediment from the Yangtze River(YR)to the East China Sea (ECS) shelf. The results showed that high contents of metals were found in the YR estuary (YRE) and in the nearshore muddy area, while lower concentrations were found in the YR channel and the ECS shelf. However, after standardization, the total content of most heavy metals from the YR showed little change or slightly increased during the transport process from the river to the estuary but decreased significantly outside the estuary, especially in the sediments of the ECS shelf. The residual fraction is the dominant fraction for all the metals, while the oxidizable and reducible fractions are the most important forms of the nonlithogenic fractions. The total amount of heavy metals from the YR to the continental shelf is mainly affected by the filtration of the estuary and the barrier impacts of the coastal current in the ECS. The environmental physicochemical conditions that vary significantly in the turbidity zone greatly influence the associated forms of metals. The metals in the acid-soluble fraction are mostly affected by the pH change in the sediment and the discharge of human activities, while the reducible fraction is significantly affected by the bottom water DO. The oxidizable fraction was affected by oxidation-reduction potential (ORP), primary productivity, as well as OM content. Therefore, with changes in the physicochemical conditions of the environment, the metals have undergone significant changes in their speciation from the YR to the ECS shelf. Various complex effects in the estuary area have not only a large filtration effect on the total amount of metals but also a major impact on the geochemical forms of the metals.
Mostrar más [+] Menos [-]Redox fluctuations shape the soil microbiome in the hypoxic bioremediation of octachlorinated dibenzodioxin- and dibenzofuran-contaminated soil
2019
Wu, Jer-Horng | Chen, Wei-Yu | Guo, Hongzhi | Li, Yun-Ming
The biodegradation of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) has been recently demonstrated in a single reactor under hypoxic conditions. Maintaining hypoxic conditions through periodic aerations results in a marked fluctuation of reduction–oxidation (redox) potential. To further assess the effects of redox fluctuations, we operated two fed-batch continuously stirred tank reactors (CSTRs) with sophisticated redox controls at different anoxic/oxic fluctuations to reduce PCDD/Fs in contaminated soil. The results of long-term reactor operation showed that the CSTR with redox fluctuations at a narrow range (−63 ± 68 mV) (CSTR_A) revealed a higher substrate hydrolysis level and PCDD/F degradation rate than did the CSTR with a redox potential that fluctuated at a broad range (−13 ± 118 mV) (CSTR_B). In accordance with analyses of bacterial 16S rRNA genes, the designated hypoxic conditions with added compost supported survival of bacterial populations at a density of approximately 10⁹ copies/g slurry. The evolved core microbiome was dominated by anoxic/oxic fluctuation-adapted Bacteroidetes, Alphaproteobacteria, and Actinobacteria, with higher species diversity and functionality, including hydrolysis and degradation of dioxin-like compounds in CSTR_A than in CSTR_B. Taken together, the overall results of this study expand the understanding of redox fluctuations in association with the degradation of recalcitrant substrates in soil and the corresponding microbiome.
Mostrar más [+] Menos [-]Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain)
2019
Blázquez-Pallí, Natàlia | Rosell, Mónica | Varias, Joan | Bosch, Marçal | Soler, Albert | Vicent, Teresa | Marco-Urrea, Ernest
The bioremediation potential of an aquifer contaminated with tetrachloroethene (PCE) was assessed by combining hydrogeochemical data of the site, microcosm studies, metabolites concentrations, compound specific-stable carbon isotope analysis and the identification of selected reductive dechlorination biomarker genes. The characterization of the site through 10 monitoring wells evidenced that leaked PCE was transformed to TCE and cis-DCE via hydrogenolysis. Carbon isotopic mass balance of chlorinated ethenes pointed to two distinct sources of contamination and discarded relevant alternate degradation pathways in the aquifer. Application of specific-genus primers targeting Dehalococcoides mccartyi species and the vinyl chloride-to-ethene reductive dehalogenase vcrA indicated the presence of autochthonous bacteria capable of the complete dechlorination of PCE. The observed cis-DCE stall was consistent with the aquifer geochemistry (positive redox potentials; presence of dissolved oxygen, nitrate, and sulphate; absence of ferrous iron), which was thermodynamically favourable to dechlorinate highly chlorinated ethenes but required lower redox potentials to evolve beyond cis-DCE to the innocuous end product ethene. Accordingly, the addition of lactate or a mixture of ethanol plus methanol as electron donor sources in parallel field-derived anoxic microcosms accelerated dechlorination of PCE and passed cis-DCE up to ethene, unlike the controls (without amendments, representative of field natural attenuation). Lactate fermentation produced acetate at near-stoichiometric amounts. The array of techniques used in this study provided complementary lines of evidence to suggest that enhanced anaerobic bioremediation using lactate as electron donor source is a feasible strategy to successfully decontaminate this site.
Mostrar más [+] Menos [-]Impacts of cage fish farms in a large reservoir on water and sediment chemistry
2019
Varol, Memet
The Keban Reservoir, which is the second man-made waterbody in Turkey, has the biggest rainbow trout production in the country. In this study, the impacts of rainbow trout farms on water and sediment chemistry were investigated. Water and sediment samples were taken at distances of 0, 10, 25, 50 and 100 m from the edge of the cages at the three fish farms, and at the respective reference stations. Samples were also taken at 0 m stations and reference stations in the late August when there were no fish in the cages. Physico-chemical variables and trace metals were analysed in all samples. Due to likely high dilution rates and recycling processes in the water column of the reservoir, little changes in the water quality parameters associated with wastes of the fish farms were noticed. When compared with those in the sediment samples at the stations near the edge of cages, the lower concentrations of total phosphorus (TP), total nitrogen (TN), organic matter (OM), total carbon (TC), sulfide (S2−), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn) and zinc (Zn), and higher values of redox potential (Eh) were found at the reference stations. According to organic enrichment classification based on S2− and Eh values, sediments of the three fish farms in the period when there were fish in the cages fell into the oxic category, whereas sediments in the August (no fish farming activity) fell into the normal category. Also, it was found in the August that most of sediment quality parameters at the 0 m stations had close values to those at the reference stations. These results revealed that a three-month period when there were no fish in the cages allows for sediments to return to reference station conditions.
Mostrar más [+] Menos [-]Functional evaluation of pollutant transformation in sediment from combined sewer system
2018
Shi, Xuan | Ngo, Huu Hao | Sang, Langtao | Jin, Pengkang | Wang, Xiaochang C. | Wang, Guanghua
In this study, a pilot combined sewer system was constructed to characterize the pollutant transformation in sewer sediment. The results showed that particulate contaminants deposited from sewage could be transformed into dissolved matter by distinct pollutant transformation pathways. Although the oxidation-reduction potential (ORP) was varied from −80 mV to −340 mV in different region of the sediment, the fermentation was the dominant process in all regions of the sediment, which induced hydrolysis and decomposition of particulate contaminants. As a result, the accumulation of dissolved organic matter and the variation of ORP values along the sediment depth led to the depth-dependent reproduction characteristics of methanogens and sulfate-reducing bacteria, which were existed in the middle and deep layer of the sediment respectively. However, the diversity of nitrifying and polyphosphate-accumulating bacteria was low in sewer sediment and those microbial communities showed a non-significant correlation with nitrogen and phosphorus contaminants, which indicated that the enrichment of nitrogen and phosphorus contaminants was mainly caused by physical deposition process. Thus, this study proposed a promising pathway to evaluate pollutant transformation and can help provide theoretical foundation for urban sewer improvement.
Mostrar más [+] Menos [-]Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel
2018
Hou, Jingtao | Sha, Zhenjie | Hartley, William | Tan, Wenfeng | Wang, Mingxia | Xiong, Juan | Li, Yuanzhi | Ke, Yujie | Long, Yi | Xue, Shengguo
Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K+ concentration in the tunnel. Batch experimental results reveal that increasing K+ concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min−1, but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K+ concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K+ concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K+ doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions.
Mostrar más [+] Menos [-]The dynamic role of pH in microbial reduction of uranium(VI) in the presence of bicarbonate
2018
Xie, Jinchuan | Wang, Jinlong | Lin, Jianfeng | Zhou, Xiaohua
The negative effect of carbonate on the rate and extent of bioreduction of aqueous U(VI) has been commonly reported. The solution pH is a key chemical factor controlling U(VI)ₐq species and the Gibbs free energy of reaction. Therefore, it is interesting to study whether the negative effect can be diminished under specific pH conditions. Experiments were conducted using Shewanella putrefaciens under anaerobic conditions with varying pH values (4–9) and bicarbonate concentrations ([CO32−]T, 0–50 mmol/L). The results showed a clear correlation between the pH-bioreduction edges of U(VI)ₐq and the [CO32−]T. The specific pH at which the maximum bioreduction occurred (pHₘbᵣ) shifted from slightly basic to acidic pH (∼7.5–∼6.0) as the [CO32−]T increased (2–50 mmol/L). At [CO32−]T = 0, however, no pHₘbᵣ was observed in terms of increasing bioreduction with pH (∼100%, pH > 7). In the presence of [CO32−]T, significant bioreduction was observed at pHₘbᵣ (∼100% at 2–30 mmol/L [CO32−]T, 93.7% at 50 mmol/L [CO32−]T), which is in contrast to the previously reported infeasibility of bioreduction at high [CO32−]T. The pH-bioreduction edges were almost comparable to the pH-biosorption edges of U(VI)ₐq on heat-killed cells, revealing that biosorption is favorable for bioreduction. The end product of U(VI)ₐq bioreduction was characterized as insoluble nanobiogenic uraninite by HRTEM. The redox potentials of the master complex species of U(VI)ₐq, such as (UO2)4(OH)7+, (UO2)2CO3(OH)3−, and UO2(CO3)34−, were calculated to obtain insights into the thermodynamic reduction mechanism. The observed dynamic role of pH in bioreduction suggests the potential for bioremediation of uranium-contaminated groundwater containing high carbonate concentrations.
Mostrar más [+] Menos [-]Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment
2015
Zaaboub, Noureddine | Martins, Maria Virgínia Alves | Dhib, Amel | Béjaoui, Béchir | Galgani, François | El Bour, Monia | Aleya, Lotfi
The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg−1 respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity.
Mostrar más [+] Menos [-]