Refinar búsqueda
Resultados 1-10 de 53
Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters
2016
Toli, Aikaterini | Chalastara, Konstantina | Mystrioti, Christiana | Xenidis, Anthimos | Papassiopi, Nymphodora
The objective of present study was to obtain the fixation of nano zero valent iron (nZVI) particles on a permeable matrix and evaluate the performance of this composite material for the removal of Cr(VI) from contaminated waters. The experiments were carried out using the cationic resin Dowex 50WX2 as porous support of the iron nanoparticles. The work was carried out in two phases. The first phase involved the fixation of nZVI on the resin matrix. The resin granules were initially mixed with a FeCl3 solution to obtain the adsorption of Fe(III). Then the Fe(III) loaded resin (RFe) was treated with polyphenol solutions to obtain the reduction of Fe(III) to the elemental state. Two polyphenol solutions were tested as reductants, i.e. green tea extract and gallic acid. Green tea was found to be inefficient, probably due to the relatively big size of the contained polyphenol molecules, but gallic acid molecules were able to reach adsorbed Fe(III) and reduce the cations to the elemental state. The second phase was focused on the investigation of Cr(VI) reduction kinetics using the nanoiron loaded resins (R-nFe). It was found that the reduction follows a kinetic law of first order with respect to Cr(VI) and to the embedded nanoiron. Compared to other similar products, this composite material was found to have comparable performance regarding reaction rates and higher degree of iron utilization. Namely the rate constant for the reduction of Cr(VI), in the presence of 1 mM nZVI, was equivalent to 1.4 h of half-life time at pH 3.2 and increased to 24 h at pH 8.5. The degree of iron utilization was as high as 0.8 mol of reduced Cr(VI) per mole of iron. It was also found that this composite material can be easily regenerated and reused for Cr(VI) reduction without significant loss of efficiency.
Mostrar más [+] Menos [-]Application of XAD-resin based passive air samplers to assess local (roadside) and regional patterns of persistent organic pollutants
2012
Barthel, Paul | Thuens, Sabine | Shunthirasingham, Chubashini | Westgate, John N. | Wania, Frank | Radke, Michael
We used XAD-resin based passive air samplers (PAS) to measure atmospheric levels of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) at five ombrotrophic bogs in Eastern Canada. The aims of our study were to investigate the influence of local roads on contaminant levels in the bogs, to derive the regional pattern of atmospheric concentrations, and to assess the uncertainties of the method. Expanded uncertainties based on the duplicate PAS deployed at 24 sites were good for the PAHs, while the deployment period of approx. 100 days was too short to yield acceptable uncertainties for PCBs. The regional PAH distribution was in good agreement with the calculated source proximity of the sampled bogs. We conclude that XAD-resin based PAS deployed for comparatively short periods are well suited for measuring atmospheric concentrations of volatile PAHs, while in remote regions longer deployment is necessary for less volatile PAHs and for PCBs.
Mostrar más [+] Menos [-]Effects of a chelating resin on metal bioavailability and toxicity to estuarine invertebrates: Divergent results of field and laboratory tests
2010
Wilkie, Emma M. | Roach, Anthony C. | Micevska, Tina | Kelaher, Brendan P. | Bishop, Melanie J.
Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300™ in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment.
Mostrar más [+] Menos [-]A nationwide survey of the occurrence of melamine and its derivatives in archived sewage sludge from the United States
2019
Zhu, Hongkai | Halden, Rolf U. | Kannan, Kurunthachalam
Melamine-based resins are used extensively in laminates, plastics, coatings, glues, and dinnerware. Little is known, however, about the occurrence of melamine and its derivatives in the environment. In this study, a nationwide survey of melamine and its derivatives, namely ammeline, ammelide, and cyanuric acid, was conducted, using archived sewage sludge samples collected from 68 wastewater treatment plants in the United States (U.S.). The sum concentrations of four target compounds in sludge ranged from 34 to 1800 ng/g dry weight (dw), with a mean concentration of 240 ng/g dw; melamine (46%) and cyanuric acid (40%) collectively accounted for 86% of the total mass of analytes. No significant geographical variation in the concentrations of melamine and its derivatives in sewage sludge was found. The estimated emission of melamine and its derivatives via land-application of sludge was approximately 1600 kg/yr in the U.S. The hazard quotient values for melamine in sludge-amended soils ranged from 2.2 × 10−5 to 4.4 × 10−3, indicating that the current levels of melamine in sludge pose a minimal risk to the soil environment.
Mostrar más [+] Menos [-]Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles
2017
McGrath, Thomas J. | Ball, A. S. | Clarke, Bradley O.
Polybrominated diphenyl ethers (PBDEs) have been used in a broad array of polymeric materials such as plastics, foams, resins and adhesives to inhibit the spread of fires since the 1970s. The widespread environmental contamination and well documented toxic effects of PBDEs have led to bans and voluntary withdrawals in many jurisdictions. Replacement novel brominated flame retardants (NBFRs) have, however, exhibited many of the same toxic characteristics as PBDEs and appear to share similar environmental fate. This paper presents a critical review of the scientific literature regarding PBDE and NBFR contamination of surface soils internationally, with the secondary objective of identifying probable pollution sources. An evaluation of NBFR distribution in soil was also conducted to assess the suitability of the newer compounds as replacements for PBDEs, with respect to their land contamination potential. Principle production of PBDEs and NBFRs and their consequent use in secondary polymer manufacture appear to be processes with strong potential to contaminate surrounding soils. Evidence suggests that PBDEs and NBFRs are also released from flame retarded products during disposal via landfill, dumping, incineration and recycling. While the land application of sewage sludge represents another major pathway of soil contamination it is not considered in this review as it is extensively covered elsewhere. Both PBDEs and NBFRs were commonly detected at background locations including Antarctica and northern polar regions. PBDE congener profiles in soil were broadly representative of the major constituents in Penta-, Octa- and Deca-BDE commercial mixtures and related to predicted market place demand. BDE-209 dominated soil profiles, followed by BDE-99 and BDE-47. Although further research is required to gain baseline data on NBFRs in soil, the current state of scientific literature suggests that NBFRs pose a similar risk to land contamination as PBDEs.
Mostrar más [+] Menos [-]Remediation of resins-contaminated soil by the combination of electrokinetic and bioremediation processes
2020
Ma, Jing | Zhang, Qi | Chen, Fu | Zhu, Qianlin | Wang, Yifei | Liu, Gangjun
In this work, soil contaminated by petroleum resins was remediated by electrokinetic-bioremediation (EK-BIO) technology for 60 days. A microbial consortium, comprising Rhizobium sp., Arthrobacter globiformis, Clavibacter xyli, Curtobacterium flaccumfaciens, Bacillus subtilis, Pseudomonas aeruginosa and Bacillus sp., was used to enhance the treatment performance. The results indicate that resin removal and phytotoxicity reduction were highest in the inoculated EK process, wherein 23.6% resins was removed from the soil and wheat seed germination ratio was increased from 47% to around 90% after treatment. The microbial counts, soil basal respiration and dehydrogenase activity were positively related to resins degradation, and they could be enhanced by direct current electric field. After remediation, the C/H ratio of resins decreased from 8.03 to 6.47. Furthermore, the structure of resins was analyzed by Fourier-transform infrared spectroscopy, elemental analysis, and ¹H nuclear magnetic resonance (¹H NMR) before and after treatment. It was found that the changes of the structure of resins took place during EK-BIO treatment and finally led to the reduction of aromaticity, aromaticity condensation and phytotoxicity.
Mostrar más [+] Menos [-]Repeated detection of polystyrene microbeads in the Lower Rhine River
2019
Mani, Thomas | Blarer, Pascal | Storck, Florian R. | Pittroff, Marco | Wernicke, Theo | Burkhardt-Holm, Patricia
Microplastics are emerging pollutants in water bodies worldwide. The environmental entry areas must be studied to localise their sources and develop preventative and remedial solutions. Rivers are major contributors to the marine microplastics load. Here, we focus on a specific type of plastic microbead (diameter 286–954 μm, predominantly opaque, white–beige) that was repeatedly identified in substantial numbers between kilometres 677 and 944 of the Rhine River, one of Europe's main waterways. Specifically, we aimed (i) to confirm the reported abrupt increase in microbead concentrations between the cities of Leverkusen and Duisburg and (ii) to assess the concentration gradient of these particles along this stretch at higher resolution. Furthermore, we set out (iii) to narrow down the putative entry stretch from 81.3 km, as reported in an earlier study, to less than 20 km according to our research design, and (iv) to identify the chemical composition of the particles and possibly reveal their original purpose. Surface water filtration (mesh: 300 μm, n = 9) at regular intervals along the focal river stretch indicated the concentration of these spherules increased from 0.05 to 8.3 particles m−3 over 20 km. This spot sampling approach was supported by nine suspended solid samples taken between 2014 and 2017, encompassing the river stretch between Leverkusen and Duisburg. Ninety-five percent of microbeads analysed (202/212) were chemically identified as crosslinked polystyrene-divinylbenzene (PS-DVB, 146/212) or polystyrene (PS, 56/212) via Raman or Fourier-transform infrared spectroscopy. Based on interpretation of polymer composition, surface structure, shape, size and colour, the PS(-DVB) microbeads are likely to be used ion-exchange resins, which are commonly applied in water softening and various industrial purification processes. The reported beads contribute considerably to the surface microplastic load of the Rhine River and their potential riverine entry area was geographically narrowed down.
Mostrar más [+] Menos [-]Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates
2016
Zhu, Zengyin | Xie, Jiawen | Zhang, Mancheng | Zhou, Qing | Liu, Fuqiang
Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R2 = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications.
Mostrar más [+] Menos [-]The plasticizer bisphenol A affects somatic and sexual development, but differently in pipid, hylid and bufonid anurans
2016
Tamschick, Stephanie | Rozenblut-Kościsty, Beata | Ogielska, Maria | Kekenj, David | Gajewski, Franz | Kruger, Angela | Kloas, Werner | Stöck, Matthias.
Due to their terrestrial habitats and aquatic reproduction, many amphibians are both very vulnerable and highly suitable bioindicators. The plasticizer bisphenol A (BPA) is one of the most produced chemical substances worldwide, and knowledge on its impacts on humans and animals is mounting. BPA is used for the industrial production of polycarbonate plastics and epoxy resins and found in a multitude of consumer products. Studies on BPA have involved mammals, fish and the fully aquatic anuran model Xenopus laevis. However, our knowledge about the sexual development of non-model, often semi-terrestrial anuran amphibians remains poor. Using a recently developed experimental design, we simultaneously applied BPA to two non-model species (Hyla arborea, Hylidae; Bufo viridis, Bufonidae) and the model X. laevis (Pipidae), compared their genetic and phenotypic sex for detection of sex reversals, and studied sexual development, focusing on anatomical and histological features of gonads. We compared three concentrations of BPA (0.023, 2.28 and 228 μg/L) to control groups in a high-standard flow-through-system, and tested whether conclusions, drawn from the model species, can be extrapolated to non-model anurans. In contrast to previous studies on fish and Xenopus, often involving dosages much higher than most environmental pollution data, we show that BPA causes neither the development of mixed sex nor of sex-reversed individuals (few, seemingly BPA-independent sex reversals) in all focal species. However, environmentally relevant concentrations, as low as 0.023 μg/L, were sufficient to provoke species-specific anatomically and histologically detectable impairments of gonads, and affected morphological traits of metamorphs. As the intensity of these effects differed between the three species, our data imply that BPA diversely affects amphibians with different evolutionary history, sex determination systems and larval ecologies. These results highlight the role of amphibians as a sensitive group that is responsive to environmental pollution.
Mostrar más [+] Menos [-]Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors
2016
García-Gomez, Héctor | Izquieta-Rojano, Sheila | Aguillaume, Laura | González-Fernández, Ignacio | Valiño, Fernando | Elustondo, David | Santamaría, Jesús M. | Àvila, Anna | Fenn, Mark E. | Alonso, Rocío
Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work, bulk and throughfall deposition of inorganic nitrogen were monitored in three different holm oak forests in Spain during two years. The results obtained with IECs were contrasted with a conventional technique using bottle collectors and with a literature review of similar studies. The performance of IECs in comparison with the conventional method was good for measuring bulk deposition of nitrate and acceptable for ammonium and total dissolved inorganic nitrogen. Mean annual bulk deposition of inorganic nitrogen ranged 3.09–5.43 kg N ha−1 according to IEC methodology, and 2.42–6.83 kg N ha−1 y−1 using the conventional method. Intra-annual variability of the net throughfall deposition of nitrogen measured with the conventional method revealed the existence of input pulses of nitrogen into the forest soil after dry periods, presumably originated from the washing of dry deposition accumulated in the canopy. Important methodological recommendations on the IEC method and discussed, compiled and summarized.
Mostrar más [+] Menos [-]