Refinar búsqueda
Resultados 1-10 de 63
Landfill leachate treatment through the combination of genetically engineered bacteria Rhodococcus erythropolis expressing Nirs and AMO and membrane filtration processes
2020
Bai, Fuliang | Tian, Hui | Ma, Jun
This study developed a process of genetically engineered bacteria Rhodococcus erythropolis expressing Nirs and AMO combined with membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) membrane (pRho-NA-MNR) for advanced treatment of landfill leachate. Results demonstrated that pRho-NA-MNR presented higher removal rate of chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia nitrogen (N–NH₄), total nitrogen (TN) and total organic carbon (TOC) than activated sludge (AS-MNR) system. Administration of pRho-NA increased nitrification by converting N–NH₄ to nitrite (N–NO₂) and Nitrate (N–NO₃), and promoting denitrification by converting N–NO₂ to nitrogen (N₂) in the landfill leachate treatment, promoted the pH control, increased sludge activity and effluent yield, shortened phase length adaptation under alternating aerobic-anoxic conditions. pRho-NA increased the nitration and denitrifying rate in the aerobic and anaerobic stage in the system by increasing Cyt cd1 and Cyt c expression in the activated sludge. Nitrogen removal by nitrification and denitrification was positively correlated to the concentration of Nirs and AMO expression. Treatment with pRho-NA promoted pollutant removal efficiency of membrane bioreactor, nanofiltration and reverse osmosis membrane processes in landfill leachate. In conclusion, data suggest that pRho-NA-MNR facilitates the formation of granular sludge and enhances comparable removal of nitrogen and organic compounds, indicating the practice of this process should be considered in landfill leachate treatment system.
Mostrar más [+] Menos [-]Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China
2018
Deng, Mingjun | Kuo, Dave T.F. | Wu, Qihang | Zhang, Ying | Liu, Xinyu | Liu, Shengyu | Hu, Xiaodong | Mai, Bixian | Liu, Zhineng | Zhang, Haozhi
The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L−1 to 103.91 ng L−1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L−1, respectively. Thirteen regulated heavy metals – including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) – have been detected in all wastewater samples at sub-mg L−1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills.
Mostrar más [+] Menos [-]Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone
2018
Wang, Xiao-Xiong | Zhang, Tian-Yuan | Dao, Guo-Hua | Hu, Hong-Ying
Methylisothiazolinone (MIT) has been widely used to control bacterial growth in reverse osmosis (RO) systems. However, MIT's toxicity on microalgae should be determined because residual MIT is concentrated into RO concentrate (ROC) and might have a severe impact on microalgae-based ROC treatment. This study investigated the tolerance of Scenedesmus sp. LX1 to MIT and revealed the mechanism of algal growth inhibition and toxicity resistance. Scenedesmus sp. LX1 was inhibited by MIT with a half-maximal effective concentration at 72 h (72 h-EC50) of 1.00 mg/L, but the strain recovered from the inhibition when its growth was not completely inhibited. It was observed that this inhibition's effect on subsequent growth was weak, and the removal of MIT was the primary reason for the recovery. Properly increasing the initial algal density significantly shortened the adaptation time for accelerated recovery in a MIT-containing culture. Photosynthesis damage by MIT was one of the primary reasons for growth inhibition, but microalgal cell respiration and adenosine triphosphate (ATP) synthesis were not completely inhibited, and the algae were still alive even when growth was completely inhibited, which was notably different from observations made with bacteria and fungi. The algae synthesized more chlorophyll, antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), and small molecules, such as reduced glutathione (GSH), to resist MIT poisoning. The microalgae-based process could treat the MIT-containing ROC, since MIT was added for only several hours a week in municipal wastewater reclamation RO processes, and the MIT average concentration was considerably lower than the maximum concentration that algae could tolerate.
Mostrar más [+] Menos [-]Increased RO concentrate toxicity following application of antiscalants – Acute toxicity tests with the amphipods Gammarus pulex and Gammarus roeseli
2015
Feiner, Mona | Beggel, Sebastian | Jaeger, Nadine | Geist, Juergen
In reverse osmosis, a frequently used technology in water desalination processes, wastewater (RO concentrate) is generated containing the retained solutes as well as so-called antiscalants (AS), i.e. chemical substances that are commonly applied to prevent membrane-blocking. In this study, a risk assessment of a possible discharge of concentrate into a small stream was conducted. The acute toxicity of two concentrates containing two different ASs and of concentrate without AS to the amphipods Gammarus pulex and Gammarus roeseli was studied. Mortality of gammarids exposed to the concentrate without AS was not different to the control, whereas concentrates including ASs caused mortality rates up to 100% at the highest test concentrations after 168 h. Resulting EC50-values were 36.2–39.4% (v/v) after 96 h and 26.6–58.0% (v/v) after 168 h. These results suggest that the ecotoxicological relevance of antiscalants is greater than currently assumed.
Mostrar más [+] Menos [-]Polyfluoroalkyl compounds in landfill leachates
2010
Polyfluoroalkyl compounds (PFCs) are widely used in industry and consumer products. These products could end up finally in landfills where their leachates are a potential source for PFCs into the aqueous environment. In this study, samples of untreated and treated leachate from 22 landfill sites in Germany were analysed for 43 PFCs. ΣPFC concentrations ranged from 31 to 12,819 ng/L in untreated leachate and 4-8060 ng/L in treated leachate. The dominating compounds in untreated leachate were perfluorobutanoic acid (PFBA) (mean contribution 27%) and perfluorobutane sulfonate (PFBS) (24%). The discharge of PFCs into the aqueous environment depended on the cleaning treatment systems. Membrane treatments (reverse osmosis and nanofiltrations) and activated carbon released lower concentrations of PFCs into the environment than cleaning systems using wet air oxidation or only biological treatment. The mass flows of ∑PFCs into the aqueous environment ranged between 0.08 and 956 mg/day.
Mostrar más [+] Menos [-]Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination
2022
Alayande, Abayomi Babatunde | Hong, Seungkwan
The use of membrane-based technology has evolved into an important strategy for supplying freshwater from seawater and wastewater to overcome the problems of water scarcity around the world. However, the presence of natural organic matter (NOM), including humic substances affects the performance of the process. Here, we present a systematic report on the mineralization of humic acid (HA), as a model for NOM, in high concentration of salts using the ultraviolet light-activated peroxymonosulfate (UV/PMS) system as a potential alternative for HA elimination during membrane-based seawater desalination and water treatment processes. Effects of various parameters such as PMS concentration, solution type, pH, anions, and anion-cation matrix on HA mineralization were assessed. The results show that 100%, 78% and 58% of HA (2 mg/L TOC) were mineralized with rate constants of 0.085 min⁻¹, 0.0073 min⁻¹, and 0.0041 min⁻¹ after 180 min reaction time at pH 7 when 0.5 mM PMS was used in deionized water, sodium chloride solution (35,000 ppm) and synthetic seawater, respectively. The reduced efficiency under saline conditions was attributed to the presence of anions in the system that acted as sulfate and hydroxyl radicals’ scavengers. Furthermore, the safety of the treated synthetic seawater was evaluated by analyzing the residual transformed products. Overall, pretreatment with the UV/PMS system mitigated fouling on the RO membrane.
Mostrar más [+] Menos [-]Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments
2011
Boleda, M(a) Rosa | Galceran, M(a) Teresa | Ventura, Francesc
The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies ≥94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse.
Mostrar más [+] Menos [-]Assessment of the abiotic and biotic effects of sodium metabisulphite pulses discharged from desalination plant chemical treatments on seagrass (Cymodocea nodosa) habitats in the Canary Islands
2014
Portillo, E. | Ruiz de la Rosa, M. | Louzara, G. | Ruiz, J.M. | Marín-Guirao, L. | Quesada, J. | González, J.C. | Roque, F. | González, N. | Mendoza, H.
Reverse osmosis membranes at many desalination plants are disinfected by periodic shock treatments with sodium metabisulphite, which have potentially toxic effects to the environment for marine life, although no empirical and experimental evidence for this is yet available. The aim of this study was to characterise for the first time, the physico-chemical modification of the marine environment and its biological effects, caused by hypersaline plumes during these membrane cleaning treatments. The case study was the Maspalomas II desalination plant, located in the south of Gran Canaria (Canary Islands, Spain). Toxicity bioassays were performed on marine species characteristic for the infralittoral soft bottoms influenced by the brine plume (Synodus synodus and Cymodocea nodosa), and revealed a high sensitivity to short-term exposure to low sodium metabisulphite concentrations. The corrective measure of incorporating a diffusion system with Venturi Eductors reduced nearly all the areas of influence, virtually eliminating the impact of the disinfectant.
Mostrar más [+] Menos [-]Membrane Processes for Resource Recovery from Anaerobically Digested Livestock Manure Effluent: Opportunities and Challenges
2020
Zhang, Zhiye | Xu, Zhicheng | Song, Xiaoye | Zhang, Bangxi | Li, Guoxue | Huda, Nazmul | Luo, Wenhai
PURPOSE OF REVIEW: Membrane techniques have been employed to concentrate livestock manure effluent from anaerobic digestion to produce highly concentrated liquid organic fertilizer. This review aims to provide a comprehensive understanding on the opportunities and challenges of membrane processes in the concentration of digested effluent for their further implementation. RECENT FINDINGS: Anaerobic digestion has been deployed to convert livestock manure into biogas (energy) and digestate with high potential as biofertilizer. Digestate can be separated into a solid and liquid fraction to reduce required capacity for onsite storage. The liquid fraction, known as digested effluent, remains a vexing challenge to digestate management due to the contradiction between its continuous production and seasonal application to farmlands, particularly in developing countries. Recent investigation has demonstrated the promise of membrane techniques for the concentration of digested effluent to recover recycling water and produce nutrient-rich liquid fertilizer. These techniques mainly include hydraulically driven membrane processes (from microfiltration to reverse osmosis), forward osmosis, membrane distillation, and electrodialysis. In most cases, these membrane techniques are hybridized to enhance the concentration efficiency. Nevertheless, the practical application of these membrane processes is hindered by several technical challenges, which mainly include membrane fouling, contaminant enrichment, ammonia volatilization, and high economic input. In this paper, we critically reviewed the performance of different membrane processes in the concentration of digested livestock manure effluent. Key technical challenges and their potential countermeasures were elucidated. Furthermore, future perspectives were provided to shed light on further development of membrane concentration techniques in the field.
Mostrar más [+] Menos [-]Low Carbon Desalination by Innovative Membrane Materials and Processes
2018
Duong, Hung Cong | Ansari, Ashley J. | Nghiem, Long D. | Pham, Thao M. | Pham, Thang D.
Seawater and brackish water desalination has been a practical approach to mitigating the global fresh water scarcity. Current large-scale desalination installations worldwide can complementarily augment the global fresh water supplies, and their capacities are steadily increasing year-on-year. Despite substantial technological advance, desalination processes are deemed energy-intensive and considerable sources of CO₂ emission, leading to the urgent need for innovative low carbon desalination platforms. This paper provides a comprehensive review on innovations in membrane processes and membrane materials for low carbon desalination. In this paper, working principles, intrinsic attributes, technical challenges, and recent advances in membrane materials of the membrane-based desalination processes, exclusively including commercialised reverse osmosis (RO) and emerging forward osmosis (FO), membrane distillation (MD), electrodialysis (ED), and capacitive deionisation (CDI), are thoroughly analysed to shed light on the prospect of low carbon desalination.
Mostrar más [+] Menos [-]