Refinar búsqueda
Resultados 1-10 de 5,858
COVID-19 Waste as Source of Microplastics in the Environment: Implication for Aquatic Species, Human, and Remediation Measures- A Review
2023
Iheanacho, Stanley | Ogbu, Miracle | Ekpeyoung, Joshua | Tabi, Elizabeth | Iheanacho, Angus | Bhuyan, Md Simul | Ogunji, Johnny
Coronavirus (COVID-19) pandemic ushered in a new era that led to the adjustments of diverse ecosystems. The pandemic restructured the global socio-economic events which prompted several adaptation measures as a response mechanism to cushion the negative impact of the disease pandemic. Critical health safety actions were imperative to curtail the spread of the disease such as wearing personal protective equipment (PPEs), masks, goggles, and using sanitizers for disinfection purposes. The daily demands for the products by individuals and medical personnel heightened their production and consumption, leading to a corresponding increase of COVID-19 wastes in the environment following indiscriminate waste disposal and poor waste management. The persistent occurrence of COVID-19 wastes aggravated microplastics (MPs) contamination in the aquatic ecosystem following the breakdown of PPEs-based plastics via oxidation, fragmentation, and photo-degradation actions. These MPs are transported in the aquatic environment via surface runoff and wind action, apart from discrete sources. MPs' presence in the aquatic systems is not without repercussions. Ingestion of MPs by aquatic organisms can cause several diseases (e.g., poor growth, oxidative distress, neurotoxicity, developmental toxicity, reproductive toxicity, immunotoxicity, and organ toxicity). Humans are at high risk of MPs uptake. Apart from aerial and soil contamination sources, consumption of aquatic food products is a critical pathway of MPs into the human body. MP toxicities in humans include liver disorder, respiratory failure, infertility, hormonal imbalance, diarrhea, developmental disorder, and mortality. Measures to alleviate the effect of COVID-19 waste litters include effective waste management plans and the adoption of technologies to extract cum degrade MPs from the aquatic and terrestrial environment.
Mostrar más [+] Menos [-]Anthropogenic share of metal contents in soils of urban areas
2018
Fazeli, G. | Karbassi, A.R. | khoramnejadian, Sh. | Nasrabadi, T.
In the present investigation, 41 soil samples were subjected to single step chemical partitioning to assess the lithogenic and non-lithogenic portions of metals in Tehran's soils. The share of various studied metals in the anthropogenic portion ranges from as low as 0.2% to as high as 85% of bulk concentration. Geo-accumulation index (Igeo) showed that Cd falls within "heavily contaminated" soils. It might be inferred that Ni, Cu, Cr, Zn, Co and Ca fall within "Deficient to minimal" class in accordance with enrichment factor (EF) classification.. Enrichment factor values (to some extents) match with the chemical partition studies results (except for Ni and Cr). The very low Ca content of soil samples could be indicative of low biological productivity in the Tehran's soil. Also the very low concentrations of Mn could be indicative of reducing environment in soils of Tehran.
Mostrar más [+] Menos [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Little is known about the occurrence of emerging pollutants (EPs) in waters in the Middle East and North Africa (MENA) region despite the extensive use of low-quality water there. Available data dealing with the sources, occurrence and removal of EPs within the MENA region in different categories of water is collected, presented and analyzed in this literature review. According to the collected database, the occurrence and removal efficiency of EPs in the water matrix in the MENA region is available, respectively, for 13 and six countries of the 18 in total; no available data is registered for the rest. Altogether, 290 EPs have been observed in different water matrices across the MENA countries, stemming mainly from industrial effluents, agricultural practices, and discharge or reuse of treated wastewater (TWW). Pharmaceutical compounds figure among the most frequently reported compounds in wastewater, TWW, surface water, and drinking water. Nevertheless, pesticides are the most frequently detected pollutants in groundwater. Worryingly, 57 cases of EPs have been reported in different fresh and drinking waters, exceeding World Health Organization (WHO) and European Commission (EC) thresholds. Overall, pharmaceuticals, organic compounds, and pesticides are the most concerning EP groups. The review revealed the ineffectiveness of treatment processes used in the region to remove EPs. Negative removals of some EPs such as carbamazepine, erythromycin, and sulfamethoxazole were recorded, suggesting their possible accumulation or release during treatment. This underlines the need to set in place and strengthen control measures, treatment procedures, standards, and policies for such pollutants in the region.
Mostrar más [+] Menos [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Multidrug-resistant enteroaggregative Escherichia coli (EAEC) enters dormant state during heat treatment: A potential hazard in municipal sludge
2022
Zhang, Bingni | Fu, Yulong | Wang, Feiyu | Yang, Jiawen | Pan, Zhiyu | Huang, Meiling | Shen, Kewei | Shen, Chaofeng
Reuse of sewage sludge is a general trend and land application is an essential way to reuse sludge. The outbreak of coronavirus disease has raised concerns about human pathogens and their serious threat to public health. The risk of pathogenic bacterial contamination from land application of municipal sludge has not been well assessed. The purpose of this study was to investigate the presence of pathogenic bacteria in municipal sewage sludge and to examine the survival potential of certain multidrug-resistant enteroaggregative Escherichia coli (EAEC) strain isolated from sewage sludge during heat treatment. The sewage sludge produced in the two wastewater treatment plants contained pathogenic bacteria such as pathogenic E. coli, Shigella flexneri, and Citrobacter freundii. The environmental strain of EAEC isolated from the sludge was resistant to eight types of antibiotics. It could also enter the dormant state after 4.5 h of treatment at 55 °C and regrow at 37 °C, while maintaining its antibiotic resistance. Our results indicate that the dormancy of EAEC might be why it is heat-resistant and could not be killed completely during the sludge heat treatment process. Owing to the regrowth of the dormant pathogenic bacteria, it is risky to apply the sludge to land even if the sludge is heat-treated, and there is also a risk of spreading antibiotic resistance.
Mostrar más [+] Menos [-]Toxicokinetics of metals in the soil invertebrate Enchytraeus crypticus exposed to field-contaminated soils from a mining area
2022
Zhang, Lulu | Van Gestel, Cornelis A.M. | Li, Zhian
Toxicokinetics may help assessing the risk of metal-contaminated soils by quantifying the development of internal metal concentrations in organisms over time. This study assessed the toxicokinetics in Enchytraeus crypticus of non-essential (Pb and Cd) and essential elements (Zn and Cu) in metal-contaminated field soils from a mining area, containing 3.49–24.3 mg Cd/kg dry soil, 433–1416 mg Pb/kg dry soil, 15.7–44.9 mg Cu/kg dry soil and 1718–6050 mg Zn/kg dry soil. Three different uptake-elimination patterns in E. crypticus were found. Both essential elements (Zn and Cu) showed fast increasing internal concentrations reaching equilibrium within 2 d in the uptake phase, without hardly any elimination after transfer to clean soil. The non-essential Cd showed a slow linear accumulation and excretion with body concentrations not reaching steady state within 21 d. Internal Pb concentrations, however, reached equilibrium within 7 d in the uptake phase. Longer exposure times in ecotoxicological tests, therefore, are required for elements like Cd. Porewater pH and dissolved organic carbon (DOC) levels were the dominant factors controlling Cd uptake from the test soils. The 21-d body Cd and Pb concentrations were best explained from 0.01 M CaCl₂-extractable soil concentrations. Steady-state Cu and Zn body concentrations were independent of soil exposure concentrations. Bioaccumulation factors (BAF) were low for Pb (<0.1 kgₛₒᵢₗ/kgwₒᵣₘ), but high for Cd at 1.78–24.3 kgₛₒᵢₗ/kgwₒᵣₘ, suggesting a potential risk of Cd biomagnification in the terrestrial food chain of the mining area ecosystem.
Mostrar más [+] Menos [-]Associations of plasma metal levels with type 2 diabetes and the mediating effects of microRNAs
2022
Nie, Hongli | Hu, Hua | Li, Zhaoyang | Wang, Ruixin | He, Jia | Li, Peiwen | Li, Weiya | Cheng, Xu | An, Jun | Zhang, Zefang | Bi, Jiao | Yao, Jinqiu | Kwok, Woon | Zhang, Xiaomin | He, Meian
The present study aims to determine the associations of multiple plasma metal levels and plasma microRNAs (miRNAs) with diabetes risk, and further explore the mediating effects of plasma miRNAs on the associations of plasma metal with diabetes risk. We detected plasma levels of 23 metals by inductively coupled plasma mass spectrometry (ICP-MS) among 94 newly diagnosed and untreated diabetic cases and 94 healthy controls. The plasma miRNAs were examined by microRNA Array screening and Taqman real-time PCR validation among the same study population. The multivariate logistic regression models were employed to explore the associations of plasma metal and miRNAs levels with diabetes risk. Generalized linear regression models were utilized to investigate the relationships between plasma metal and plasma miRNAs, and mediation analysis was used to assess the mediating effects of plasma miRNAs on the relationships between plasma metals and diabetes risk. Plasma aluminum (Al), titanium (Ti), copper (Cu), zinc (Zn), selenium (Se), rubidium (Rb), strontium (Sr), barium (Ba), and Thallium (Tl) levels were correlated with elevated diabetic risk while molybdenum (Mo) with decreased diabetic risk (P < 0.05 after FDR multiple correction). MiR-122–5p and miR-3141 were positively associated with diabetes risk (all P < 0.05). Ti, Cu, and Zn were positively correlated with miR-122–5p (P = 0.001, 0.028 and 0.004 respectively). Ti, Cu, and Se were positively correlated with miR-3141 (P = 0.003, 0.015, and 0.031 respectively). In addition, Zn was positively correlated with miR-193b-3p (P = 0.002). Ti was negatively correlated with miR-26b-3p (P = 0.016), while Mo and miR-26b-3p were positively correlated (P = 0.042). In the mediation analysis, miR-122–5p mediated 48.0% of the association between Ti and diabetes risk. The biological mechanisms of the association are needed to be explored in further studies.
Mostrar más [+] Menos [-]Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China
2022
Bo, Xin | Guo, Jing | Wan, Ruxing | Jia, Yuling | Yang, Zhaoxu | Lu, Yong | Wei, Min
As primary anthropogenic emission source of toxic pollutants such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), municipal solid waste (MSW) incineration has caused worldwide concern. However, a comprehensive analysis of the pollution characteristics and health risks of PCDD/Fs and heavy metals in soils around MSW incineration plants is lacking. In this study, 17 PCDD/Fs and 11 heavy metals in soil samples collected near MSW incineration plants in Sichuan province were investigated to evaluate their pollution characteristics and potential health risk. Sichuan was selected as the study area because the MSW incineration amount in this province ranks first among all inland provinces in China. The PCDD/Fs concentrations ranged from 0.30 to 7.50 ng I-TEQ/kg, which were significantly below risk screening and intervention thresholds. Regarding heavy metals, principal component analysis suggested that Hg, Pb and Zn were the primary metals emitted from the MSW incineration plants. Cluster analysis of PCDD/Fs and heavy metals showed that of PCDD/Fs homologs and heavy metals (e.g., Hg, Pb, Zn and Cd) were clustered into one group, indicating the coexistence and coaccumulation of heavy metals (especially Hg, Pb, Zn, and Cd) and PCDD/Fs in soil. These heavy metals are thus candidate tracers for PCDD/Fs in soil near MSW incineration plants. A health risk analysis found that the carcinogenic and non-carcinogenic risks of PCDD/Fs and heavy metals (except for Ni) in the soil samples were all within acceptable levels. This study provides new insights into correlations and health risks of PCDD/Fs and heavy metals in surface soil near MSW incineration plants. The findings have implications for future studies of environmental and human health risk analysis related to waste incineration.
Mostrar más [+] Menos [-]Analysis of environmental chemical mixtures and nonalcoholic fatty liver disease: NHANES 1999–2014
2022
Li, Wei | Xiao, Haitao | Wu, Hong | Pan, Cheng | Deng, Ke | Xu, Xuewen | Zhang, Yange
We aimed to investigate the associations between chemical mixtures and the risk of nonalcoholic fatty liver disease (NAFLD) in this study. A total of 127 exposure analytes within 13 chemical mixture groups were included in the current analysis. Associations between chemical mixture exposure and prevalence of NAFLD were examined using weighted quantile sum (WQS) regressions. NAFLD was diagnosed by hepatic steatosis index (HSI) and US fatty liver index (USFLI). In USFLI-NAFLD cohort, chemical mixtures positively associated with NAFLD development included urinary metals (OR: 1.10, 95% CI: 1.04–1.16), urinary perchlorate, nitrate and thiocyanate (OR: 1.06, 95% CI: 1.02–1.11), urinary pesticides (OR: 1.24, 95% CI: 1.09–1.40), urinary phthalates (OR: 1.18, 95% CI: 1.09–1.28), urinary polyaromatic hydrocarbons (PAHs) (OR: 1.08, 95% CI: 1.03–1.14), and urinary pyrethroids, herbicides, and organophosphate pesticides metabolites (OR: 1.32, 95% CI: 1.15–1.51). All of the above mixtures were also statistically significant in WQS regressions in the HSI-NAFLD cohort. Besides, some chemical mixtures were only significant in HSI-NAFLD cohort including urinary arsenics (OR: 1.07, 95% CI: 1.02–1.12), urinary phenols (OR: 1.10, 95% CI: 1.02–1.19) and blood polychlorinated dibenzo-p-dioxins (OR: 1.10, 95% CI: 1.03–1.17). Three types of chemical mixtures only showed significant associations in the healthy lifestyle score (HLS) of 3–4 subgroup, including urinary perchlorate, nitrate and thiocyanate, urinary PAHs and blood polychlorinated dibenzo-p-dioxins. In conclusion, the exposure of specific types of chemical mixtures were associated with elevated NAFLD risk, and the effects of some chemical mixtures on NAFLD development exhibited differences in participants with different lifestyles.
Mostrar más [+] Menos [-]β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures
2022
Shao, Zexi | Liu, Na | Wang, Wei | Zhu, Lizhong
Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), β-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 μg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log₂FC| > 3.0) under 100 μg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.
Mostrar más [+] Menos [-]